Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93073
Название: | Approximation of the Differentiation Operator on the Class of Functions Analytic in an Annulus |
Авторы: | Akopyan, R. R. |
Дата публикации: | 2017 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Akopyan R. R. Approximation of the Differentiation Operator on the Class of Functions Analytic in an Annulus / R. R. Akopyan. — DOI 10.15826/umj.2017.2.002. — Text : electronic // Ural Mathematical Journal. — 2017. — Volume 3. — № 2. — P. 6-13. |
Аннотация: | In the class of functions analytic in the annulus Cr:={z∈C:r<|z|<1} with bounded Lp-norms on the unit circle, we study the problem of the best approximation of the operator taking the nontangential limit boundary values of a function on the circle Γr of radius r to values of the derivative of the function on the circle Γρ of radius ρ,r<ρ<1, by bounded linear operators from Lp(Γr) to Lp(Γρ) with norms not exceeding a number N. A solution of the problem has been obtained in the case when N belongs to the union of a sequence of intervals. The related problem of optimal recovery of the derivative of a function from boundary values of the function on Γρ given with an error has been solved. |
Ключевые слова: | BEST APPROXIMATION OF OPERATORS OPTIMAL RECOVERY ANALYTIC FUNCTIONS |
URI: | http://elar.urfu.ru/handle/10995/93073 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2017.2.002 |
Сведения о поддержке: | This work was supported by the Russian Foundation for Basic Research (project no. 15-01-02705), the Program for State Support of Leading Scientific Schools of the Russian Federation (project no. NSh-9356.2016.1), and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University). |
Источники: | Ural Mathematical Journal. 2017. Volume 3. № 2 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2017_3_2_6-13.pdf | 139,53 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons