Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93069
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorArdjouni , A.en
dc.contributor.authorDjoudi, A.en
dc.date.accessioned2020-10-30T12:53:58Z-
dc.date.available2020-10-30T12:53:58Z-
dc.date.issued2019-
dc.identifier.citationArdjouni A. Approximating Solutions of Nonlinear Hybrid Caputo Fractional Integro-Differential Equations Via Dhage Iteration Principle / A. Ardjouni , A. Djoudi. — DOI 10.15826/umj.2019.1.001. — Text : electronic // Ural Mathematical Journal. — 2019. — Volume 5. — № 1. — P. 3-12.en
dc.identifier.issn2414-3952-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/93069-
dc.description.abstractIn this article, we prove the existence and approximation of solutions of the initial value problems of nonlinear hybrid Caputo fractional integro-differential equations. The main tool employed here is the Dhage iteration principle in a partially ordered normed linear space. An example is also given to illustrate the main results.en
dc.description.sponsorshipThe authors would like to thank the anonymous referee for his/her valuable comments and good advice.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relation.ispartofUral Mathematical Journal. 2019. Volume 5. № 1en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectAPPROXIMATING SOLUTIONSen
dc.subjectINITIAL VALUE PROBLEMSen
dc.subjectDHAGE ITERATION PRINCIPLEen
dc.subjectHYBRID FIXED POINT THEOREMen
dc.titleApproximating Solutions of Nonlinear Hybrid Caputo Fractional Integro-Differential Equations Via Dhage Iteration Principleen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.15826/umj.2019.1.001-
local.description.firstpage3-
local.description.lastpage12-
local.issue1-
local.volume5-
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2019_5_1_3-12.pdf144,71 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons