Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/93053
Название: | On Some Numerical Integration Curves for Pde in Neighborhood of "Butterfly" Catastrophe Point |
Авторы: | Khachay, O. Yu. Nosov, P. A. |
Дата публикации: | 2016 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Khachay O. Yu. On Some Numerical Integration Curves for Pde in Neighborhood of "Butterfly" Catastrophe Point / O. Yu. Khachay, P. A. Nosov. — DOI 10.15826/umj.2016.2.011. — Text : electronic // Ural Mathematical Journal. — 2016. — Volume 2. — № 2. — P. 127-140. |
Аннотация: | We consider a three-dimensional nonlinear wave equation with the source term smoothly changing over time and space due to a small parameter. The behavior of solutions of this PDE near the typical “butterfly” catastrophe point is studied. In the framework of matched asymptotic expansions method we derive a nonlinear ODE of the second order depending on three parameters to search for the special solution describing the rapid restructuring of the solution of the PDE in a small neighborhood of the catastrophe point, matching with expansion in a more outer layer. Numerical integration curves of the equation for the leading term of the inner asymptotic expansion are obtained. |
Ключевые слова: | MATCHED ASYMPTOTIC EXPANSIONS NUMERICAL INTEGRATION BUTTERFLY CATASTROPHE NONLINEAR ODE |
URI: | http://elar.urfu.ru/handle/10995/93053 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2016.2.011 |
Сведения о поддержке: | This work was supported by RFBR, research project No 16–31–00222. |
Источники: | Ural Mathematical Journal. 2016. Volume 2. № 2 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2016_2_2_127-140.pdf | 1,31 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons