Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/93051
Название: On Parameterized Complexity of Hitting Set Problem for Axis–Parallel Squares Intersecting a Straight Line
Авторы: Khachay, D. M.
Khachay, M. Yu.
Дата публикации: 2016
Издатель: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Библиографическое описание: Khachay D. M. On Parameterized Complexity of Hitting Set Problem for Axis–Parallel Squares Intersecting a Straight Line / D. M. Khachay, M. Yu. Khachay. — DOI 10.15826/umj.2016.2.010. — Text : electronic // Ural Mathematical Journal. — 2016. — Volume 2. — № 2. — P. 117-126.
Аннотация: The Hitting Set Problem (HSP) is the well known extremal problem adopting research interest in the fields of combinatorial optimization, computational geometry, and statistical learning theory for decades. In the general setting, the problem is NP-hard and hardly approximable. Also, the HSP remains intractable even in very specific geometric settings, e.g. for axis-parallel rectangles intersecting a given straight line. Recently, for the special case of the problem, where all the rectangles are unit squares, a polynomial but very time consuming optimal algorithm was proposed. We improve this algorithm to decrease its complexity bound more than 100 degrees of magnitude. Also, we extend it to the more general case of the problem and show that the geometric HSP for axis-parallel (not necessarily unit) squares intersected by a line is polynomially solvable for any fixed range of squares to hit.
Ключевые слова: HITTING SET PROBLEM
DYNAMIC PROGRAMMING
COMPUTATIONAL GEOMETRY
PARAMETERIZED COMPLEXITY
URI: http://elar.urfu.ru/handle/10995/93051
Условия доступа: Creative Commons Attribution License
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2016.2.010
Сведения о поддержке: This research was supported by Russian Foundation for Basic Research, grant no. 16-07-00266 and Complex Program of Ural Branch of RAS, grant no. 15-7-1-23.
Источники: Ural Mathematical Journal. 2016. Volume 2. № 2
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2016_2_2_117-126.pdf586,39 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons