Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/91388
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShubat, O. M.en
dc.contributor.authorShmarova, I. V.en
dc.contributor.authorШубат, О. М.ru
dc.contributor.authorШмарова, И. В.ru
dc.date.accessioned2020-10-12T09:48:51Z-
dc.date.available2020-10-12T09:48:51Z-
dc.date.issued2017-
dc.identifier.citationШубат О. М. Кластерный анализ как аналитический инструментарий политики народонаселения / О. М. Шубат, И. В. Шмарова. — DOI 10.17059/2017-4-16. — Текст : электронный // Экономика региона. — 2017. — Том 13, выпуск 4. — С. 1175-1183.ru
dc.identifier.issn2411-1406online
dc.identifier.issn2072-6414print
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85040314828&doi=10.17059%2f2017-4-16&partnerID=40&md5=77b4390409c7eef00301ebd4eec4aacbm
dc.identifier.otherWOS:000419294600016wos
dc.identifier.urihttp://elar.urfu.ru/handle/10995/91388-
dc.description.abstractThe predicted negative trends in Russian demography (falling birth rates, population decline) actualize the need to strengthen measures of family and population policy. Our research purpose is to identify groups of Russian regions with similar characteristics in the family sphere using cluster analysis. The findings should make an important contribution to the field of family policy. We used hierarchical cluster analysis based on the Ward method and the Euclidean distance for segmentation of Russian regions. Clustering is based on four variables, which allowed assessing the family institution in the region. The authors used the data of Federal State Statistics Service from 2010 to 2015. Clustering and profiling of each segment has allowed forming a model of Russian regions depending on the features of the family institution in these regions. The authors revealed four clusters grouping regions with similar problems in the family sphere. This segmentation makes it possible to develop the most relevant family policy measures in each group of regions. Thus, the analysis has shown a high degree of differentiation of the family institution in the regions. This suggests that a unified approach to population problems' solving is far from being effective. To achieve greater results in the implementation of family policy, a differentiated approach is needed. Methods of multidimensional data classification can be successfully applied as a relevant analytical toolkit. Further research could develop the adaptation of multidimensional classification methods to the analysis of the population problems in Russian regions. In particular, the algorithms of nonparametric cluster analysis may be of relevance in future studies.en
dc.description.abstractНа основе кластерного анализа выявлены группы российских регионов со схожими проблемами в сфере семьи. Рассмотрена Концепция государственной семейной политики в Российской Федерации на период до 2025 года.ru
dc.description.sponsorshipThe article has been supported by the Decree of the Government of the Russian Federation No 211, contract No 02.A03.21.0006.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherInstitute of Economics, Ural Branch of the Russian Academy of Sciencesen
dc.publisherИнститут экономики Уральского отделения РАНru
dc.relation.ispartofЭкономика региона. 2017. Том 13, выпуск 4ru
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.subjectCLUSTER ANALYSISen
dc.subjectDIFFERENTIATED APPROACHen
dc.subjectEUCLIDEAN DISTANCEen
dc.subjectFAMILY INSTITUTIONen
dc.subjectFAMILY POLICYen
dc.subjectMULTIDIMENSIONAL DATA CLASSIFICATIONen
dc.subjectPOPULATION POLICYen
dc.subjectPOPULATION TRENDSen
dc.subjectRUSSIAN REGIONSen
dc.subjectWARD'S METHODen
dc.titleКластерный анализ как аналитический инструментарий политики народонаселенияru
dc.title.alternativeCluster analysis as an analytical tool of population policyen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.17059/2017-4-16-
dc.identifier.scopus85040314828-
local.description.firstpage1175-
local.description.lastpage1183-
local.issue4-
local.volume13-
dc.identifier.wos000419294600016-
local.identifier.eid2-s2.0-85040314828-
Располагается в коллекциях:Economy of Regions

Файлы этого ресурса:
Файл Описание РазмерФормат 
2017_13_4_016.pdf434,07 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.