Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/90290
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShorikov, A. F.en
dc.contributor.authorBabenko, V. A.en
dc.date.accessioned2020-09-29T09:46:47Z-
dc.date.available2020-09-29T09:46:47Z-
dc.date.issued2014-
dc.identifier.citationShorikov, A. F. Optimization of assured result in dynamical model of management of innovation process in the enterprise of agricultural production complex / A. F. Shorikov, V. A. Babenko. — DOI 10.17059/2014-1-18 // Economy of Region. — 2014. — Vol. 1. — P. 196-202.en
dc.identifier.issn2411-1406online
dc.identifier.issn2072-6414print
dc.identifier.other2good_DOI
dc.identifier.otherhttp://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84979807246m
dc.identifier.otherhttps://doi.org/10.17059/2014-1-18pdf
dc.identifier.other4f796bd0-8789-4945-a3c1-72c2c1c86ce3pure_uuid
dc.identifier.urihttp://elar.urfu.ru/handle/10995/90290-
dc.description.abstractResearch and the problem solution of management of innovative process at the enterprise (UIPP) demands the development of the dynamic economic-mathematical model considering the control action, uncontrolled parameters (risks, modeling errors, etc.) and deficit of information. At the same time, the existing approaches to the solution of similar problems are generally based on the static models and use the device of stochastic modeling, which requires knowledge of probabilistic characteristics of key parameters of the model and special conditions on realization of considered process. It is significant that the strict conditions are necessary for the use of the stochastic modeling, but in practice it is not possible. In the article, it is offered to use the determined approach for the modeling and solution of an initial problems in the form of dynamic problem of program minimax control (optimization of the guaranteed result) IPP on the set timepoint taking into account risks. At the same time, the risks in the system of UIPP are understood as the factors, which influence negatively or catastrophically on the results of the processes considered in the system. To solve the problem of minimax program control of IPP at risks, the method to implement the solutions of the final number of the problem of linear and convex mathematical programming and a problem of discrete optimization is offered. The offered method gives the chance to develop the effective numerical procedures allowing to realize computer modeling of dynamics considered problem, to create program minimax control of IPP, and to receive the optimum guaranteed result. The results presented in the article are based on the research [2, 3, 7-10] and can be used for economic-mathematical modeling and the solution of other problems of data forecasting process optimization and management at the deficit of information and at risks, and also for development of the corresponding software and hardware complexes to support of adoption of effective administrative decisions in practice. Economic-mathematical models of such problems are presented, for instance, in works [4-6].© Vinko Muštra, Lena Maleš ević Perović, Silvia Golem. 2014.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherInstitute of Economics, Ural Branch of the Russian Academy of Sciencesen
dc.relation.ispartofЭкономика региона. 2014. Выпуск 1ru
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rightscc-by-ncother
dc.sourceEcon. Reg.2
dc.sourceEconomy of Regionen
dc.subjectA FORECASTS SETen
dc.subjectCOMMODITY ASSORTMENTen
dc.subjectDISCRETETIME DYNAMICAL SYSTEMen
dc.subjectECONOMICS AND MATHEMATICAL MODELINGen
dc.subjectMANYCRITERION OPTIMIZATION PROBLEMen
dc.subjectPROGRAM CONTROL PROBLEMen
dc.titleOptimization of assured result in dynamical model of management of innovation process in the enterprise of agricultural production complexen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi21240247-
dc.identifier.doi10.17059/2014-1-18-
dc.identifier.scopus84979807246-
local.affiliationDepartment of Applied Mathematics, Ural Federal University, 19 Mira str., Yekaterinburg, 620002, Russian Federationen
local.affiliationDepartment of Economic Cybernetics, V.V. Dokuchaev Kharkov National Agrarian University, Kommunist-1, Kharkov Region, 62483, Ukraineen
local.contributor.employeeShorikov, A.F., Department of Applied Mathematics, Ural Federal University, 19 Mira str., Yekaterinburg, 620002, Russian Federationru
local.contributor.employeeBabenko, V.A., Department of Economic Cybernetics, V.V. Dokuchaev Kharkov National Agrarian University, Kommunist-1, Kharkov Region, 62483, Ukraineru
local.description.firstpage196-
local.description.lastpage202-
local.volume1-
dc.identifier.wos000422199700018-
local.identifier.pure1051978-
local.identifier.eid2-s2.0-84979807246-
local.identifier.wosWOS:000422199700018-
Располагается в коллекциях:Economy of Regions

Файлы этого ресурса:
Файл Описание РазмерФормат 
10.17059-2014-1-18.pdf471,07 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.