Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/75739
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Chernykh, I. | en |
dc.contributor.author | Chechushkov, D. | en |
dc.contributor.author | Panikovskaya, T. | en |
dc.date.accessioned | 2019-07-22T06:48:24Z | - |
dc.date.available | 2019-07-22T06:48:24Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Chernykh I. The prediction of electric energy consumption using an artificial neural network / I. Chernykh, D. Chechushkov, T. Panikovskaya // WIT Transactions on Ecology and the Environment. — 2014. — Vol. 190 VOLUME 1. — P. 109-117. | en |
dc.identifier.issn | 1743-3541 | - |
dc.identifier.other | http://www.witpress.com/Secure/elibrary/papers/EQ14/EQ14012FU1.pdf | |
dc.identifier.other | 1 | good_DOI |
dc.identifier.other | 0d8f5e43-2a7d-4fc5-ba31-96f8670c75d3 | pure_uuid |
dc.identifier.other | http://www.scopus.com/inward/record.url?partnerID=8YFLogxK&scp=84897841114 | m |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/75739 | - |
dc.description.abstract | This paper presents the results of the studies on forecasting the electrical loads for a megapolis district with the use of artificial neural networks (ANN) as one of the most accomplished and promising solutions to this challenge. A theoretical approach to the issue is combined with the results of experimental studies using real schedules. © 2014 WIT Press. | en |
dc.description.sponsorship | International Journal of Safety and Security Engineering;International Journal of Sustainable Development and Planning;WIT Transactions on Ecology and the Environment | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | WITPress | en |
dc.rights | info:eu-repo/semantics/openAccess | en |
dc.source | WIT Transactions on Ecology and the Environment | en |
dc.subject | ARTIFICIAL NEURAL NETWORK | en |
dc.subject | ELECTRICAL LOADS | en |
dc.subject | UPDATED INPUT DATA | en |
dc.subject | ARTIFICIAL NEURAL NETWORK | en |
dc.subject | ENERGY USE | en |
dc.subject | MEGACITY | en |
dc.subject | PREDICTION | en |
dc.title | The prediction of electric energy consumption using an artificial neural network | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.conference.name | 1st International Conference on Energy Production and Management in the 21st Century: The Quest for Sustainable Energy | en |
dc.conference.date | 23 April 2014 through 25 April 2014 | - |
dc.identifier.doi | 10.2495/EQ140121 | - |
dc.identifier.scopus | 84897841114 | - |
local.affiliation | Department of High Voltage Engineering, Ural Federal University, Russian Federation | en |
local.affiliation | Department of Automated Electric Systems, Ural Federal University, Russian Federation | en |
local.contributor.employee | Черных Илья Викторович | ru |
local.contributor.employee | Чечушков Дмитрий Александрович | ru |
local.contributor.employee | Паниковская Татьяна Юрьевна | ru |
local.description.firstpage | 109 | - |
local.description.lastpage | 117 | - |
local.volume | 190 VOLUME 1 | - |
local.identifier.pure | 379160 | - |
local.identifier.eid | 2-s2.0-84897841114 | - |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
10.2495-eq140121.pdf | 386,05 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.