Please use this identifier to cite or link to this item:
Title: Effect Of Phase Angle On Tandem Flapping-wing Power Generation
Authors: Karakas, F.
Fenercioglu, I.
Issue Date: 2017
Publisher: Уральский федеральный университет
Ural Federal University
WIT Press
Citation: Karakas F. Effect Of Phase Angle On Tandem Flapping-wing Power Generation / F. Karakas, I. Fenercioglu // International Journal of Energy Production and Management. — 2017. — Vol. 2. Iss. 1. — P. 95-105.
Abstract: Two tandem wings undergoing two-dimensional sinusoidal and non-sinusoidal pitch and plunge motions are studied experimentally in a water channel at a chord-based Reynolds number of 10,000. The hindwing operates in the wake of the forewing, and its performance is affected by the vortices shed by the forewing in a tandem wing application. The vortex-wing and vortex-vortex interactions are affected by the changes in the phase angle between the fore and the hind wings. This study investigates how the changes in phase angle between the motions of the two wings play a role on the leading edge vortex (LEV) formations on the hindwing and the resulting effects on the power coefficient and the efficiency. The instantaneous lift and torque are measured by a force sensor; the velocity fields are captured by a digital particle image velocimetry (PIV) system. Sinusoidal and non-sinusoidal oscillations consisting of a pitch leading plunge motion with ϕ = 90° phase angle are used for the fore and hind wing motions. Different phase angles between the fore and hindwings are tested for the tandem configuration in the range of ψ = 0°–360° with an increment of 45°. The pitch pivot point to point distance of two chords was set between the fore and hindwings. It is found that the phase angle between the tandem foils determines the timing and the sign of the forewing-shed LEV when the hindwing encounters this LEV. Such an interaction affects the LEV formation, growth and shedding on the hindwing and results in a change in power generation performance of the hindwing. The results further show that at this specific distance between the wings, the maximum power coefficient and efficiency occur when the phase angle between the motions of the tandem wings is near ψ = 135° for the sinusoidal pitching and plunging.
ISSN: 2056-3272 (paper format)
2056-3280 (online)
DOI: 10.2495/EQ-V2-N1-95-105
metadata.dc.description.sponsorship: This study is funded by the Scientific and Technological Research Council of Turkey (TUBITAK) Grant 214M385.
Origin: International Journal of Energy Production and Management. 2017. Vol. 2. Iss. 1
Appears in Collections:International Journal of Energy Production and Management

Files in This Item:
File Description SizeFormat 
ijepm_2017_v2_1_10.pdf3,85 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.