Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/4561
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorErmakova, Lianaen
dc.date.accessioned2012-11-13T11:26:43Z-
dc.date.available2012-11-13T11:26:43Z-
dc.date.issued2012-
dc.identifier.citationErmakova L. Automatic summary evaluation. Roug e modifications / L. Ermakova // VI Russian Summer School in Information Retrieval, August 6–10, 2012. Proceedings of the Sixth Russian Young Scientists Conference in Information Retrieval / B. Sokolov, P. Braslavski (Eds.). — Yaroslavl, 2012. — P. 58-70.ru
dc.identifier.isbn978-5-8397-0888-4-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/4561-
dc.description.abstractNowadays there is no common approach to summary. Manual evaluation is expensive and subjective and it is not applicable in real time or on a large corpus. Widely used approaches involve little human efforts and assume comparison with a set of reference summaries. We tried to overcome drawbacks of existing metrics such as ignoring redundant information, synonyms and sentence ordering. Our method combines edit distance, ROUGE-SU and trigrams similarity measure enriched by weights for different parts of speech and synonyms. Since nouns provide the most valuable information, each sentence is mapped into a set of nouns. If the normalized intersection of any pair is greater than a predefined threshold the sentences are penalized. Doing extracts there is no need to analyze sentence structure but sentence ordering is crucial. Sometimes it is impossible to compare sentence order with a gold standard. Therefore similarity between adjacent sentences may be used as a measure of text coherence. Chronological constraint violation should be penalized. Relevance score and readability assessment may be combined in the F-measure. In order to choose the best parameter values machine learning can be applied.ru
dc.format.extent193736 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.relation.ispartofRuSSIR 2012en
dc.subjectИНФОРМАТИКАru
dc.subjectИНФОРМАЦИОННЫЙ ПОИСК В ИНТЕРНЕТЕru
dc.subjectПОИСК ИНФОРМАЦИИ В ИНТЕРНЕТЕru
dc.subjectКОНФЕРЕНЦИИru
dc.subjectAUTOMATIC SUMMARY EVALUATIONen
dc.subjectROUGEen
dc.subjectSUMMARIZATIONen
dc.subjectEDIT DISTANCEen
dc.subjectREADABILITYen
dc.subjectSENTENCE ORDERINGen
dc.subjectREDUNDANT INFORMATIONen
dc.titleAutomatic summary evaluation. Roug e modificationsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.conference.nameVI Российская летняя школа по информационному поиску (RuSSIR’2012)ru
dc.conference.nameVI Russian Summer School in Information Retrieval (RuSSIR’2012)en
dc.conference.date6.08.2012–10.08.2012-
Располагается в коллекциях:Информационный поиск

Файлы этого ресурса:
Файл Описание РазмерФормат 
RuSSIR_2012_06.pdf189,2 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.