Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/4561
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Ermakova, Liana | en |
dc.date.accessioned | 2012-11-13T11:26:43Z | - |
dc.date.available | 2012-11-13T11:26:43Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Ermakova L. Automatic summary evaluation. Roug e modifications / L. Ermakova // VI Russian Summer School in Information Retrieval, August 6–10, 2012. Proceedings of the Sixth Russian Young Scientists Conference in Information Retrieval / B. Sokolov, P. Braslavski (Eds.). — Yaroslavl, 2012. — P. 58-70. | ru |
dc.identifier.isbn | 978-5-8397-0888-4 | - |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/4561 | - |
dc.description.abstract | Nowadays there is no common approach to summary. Manual evaluation is expensive and subjective and it is not applicable in real time or on a large corpus. Widely used approaches involve little human efforts and assume comparison with a set of reference summaries. We tried to overcome drawbacks of existing metrics such as ignoring redundant information, synonyms and sentence ordering. Our method combines edit distance, ROUGE-SU and trigrams similarity measure enriched by weights for different parts of speech and synonyms. Since nouns provide the most valuable information, each sentence is mapped into a set of nouns. If the normalized intersection of any pair is greater than a predefined threshold the sentences are penalized. Doing extracts there is no need to analyze sentence structure but sentence ordering is crucial. Sometimes it is impossible to compare sentence order with a gold standard. Therefore similarity between adjacent sentences may be used as a measure of text coherence. Chronological constraint violation should be penalized. Relevance score and readability assessment may be combined in the F-measure. In order to choose the best parameter values machine learning can be applied. | ru |
dc.format.extent | 193736 bytes | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.relation.ispartof | RuSSIR 2012 | en |
dc.subject | ИНФОРМАТИКА | ru |
dc.subject | ИНФОРМАЦИОННЫЙ ПОИСК В ИНТЕРНЕТЕ | ru |
dc.subject | ПОИСК ИНФОРМАЦИИ В ИНТЕРНЕТЕ | ru |
dc.subject | КОНФЕРЕНЦИИ | ru |
dc.subject | AUTOMATIC SUMMARY EVALUATION | en |
dc.subject | ROUGE | en |
dc.subject | SUMMARIZATION | en |
dc.subject | EDIT DISTANCE | en |
dc.subject | READABILITY | en |
dc.subject | SENTENCE ORDERING | en |
dc.subject | REDUNDANT INFORMATION | en |
dc.title | Automatic summary evaluation. Roug e modifications | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.conference.name | VI Российская летняя школа по информационному поиску (RuSSIR’2012) | ru |
dc.conference.name | VI Russian Summer School in Information Retrieval (RuSSIR’2012) | en |
dc.conference.date | 6.08.2012–10.08.2012 | - |
Располагается в коллекциях: | Информационный поиск |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
RuSSIR_2012_06.pdf | 189,2 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.