Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/133536
Название: Enhancing the Efficacy of Adsorption-Based Carbon Storage Systems: A Finite Element Analysis Approach
Авторы: Mansour, M. M.
Hamood, H. M.
Lafta, A. M.
Nashee, S. R.
Shkarah, A. J.
Дата публикации: 2024
Издатель: International Information and Engineering Technology Association (IIETA)
Ural Federal University
Уральский федеральный университет
Библиографическое описание: Enhancing the Efficacy of Adsorption-Based Carbon Storage Systems: A Finite Element Analysis Approach / Mustafa M. Mansour, Hayder M. Hamood, Alaa M. Lafta, Sarah R. Nashee, Ahmed J. Shkarah // International Journal of Energy Production and Management. — 2024. — Vol. 9. Iss. 1. — P. 19-24.
Аннотация: In light of the International Energy Agency's (IEA) 2020 special report, which estimates the global capacity for carbon dioxide (CO2) storage to range between 8,000 and 55,000 gigatons, the imperative to enhance carbon storage efficiency and develop superior distribution systems has never been more critical. This investigation focuses on the optimization of adsorption-based carbon storage units through a comprehensive systems analysis, employing the finite element method within the COMSOL Multi-physics™ framework to devise a two-dimensional axisymmetric model that integrates energy, mass, and momentum conservation principles in accordance with thermodynamic constraints. The analysis entails examining the charging and discharging processes of the storage unit under a designated pressure of 9 MPa and an initial temperature of 302 K, with refrigeration provided by ice water. Findings from the simulation underscore the significance of observing pressure and temperature fluctuations during operational phases, revealing higher temperatures in the central region of the tank at the end of the charging cycle, contrasted with lower temperatures upon discharge completion. Moreover, a gradient in velocity is observed, diminishing from the entry point along the tank's axis. The study underscores the feasibility of storing significantly more CO2 than the 100 Gt projected by the IEA's "sustainable development" scenario by 2055, with land-based storage potential notably surpassing offshore capacities. The research advances by developing a predictive model for a novel CO2 adsorbent throughout the adsorption-desorption cycle, encompassing all relevant transport phenomena. This model is validated against extant data for H2 storage, facilitating predictions of pressure and temperature variations across different tank locations. This work not only contributes to the field by enhancing the understanding of thermal effects within carbon storage units but also emphasizes the role of advanced modeling techniques in bolstering environmental protection efforts through improved liquid carbon storage solutions.
Ключевые слова: CARBON STORAGE CAPACITIES
CARBON CAPTURE
STORAGE UNITS
THERMAL EFFECTS
POLLUTION
ENVIRONMENTAL ENHANCEMENT
LIQUID CARBON
URI: http://elar.urfu.ru/handle/10995/133536
Идентификатор РИНЦ: https://www.elibrary.ru/item.asp?id=67216773
ISSN: 2056-3280
2056-3272
DOI: 10.18280/ijepm.090103
Источники: International Journal of Energy Production and Management. 2024. Vol. 9. Iss. 1
Располагается в коллекциях:International Journal of Energy Production and Management

Файлы этого ресурса:
Файл Описание РазмерФормат 
ijepm_2024_v9_1_03.pdf1,11 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.