Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/129435
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDurdiev, D. K.en
dc.contributor.authorNuriddinov, Zh. Z.en
dc.date.accessioned2024-02-14T05:20:46Z-
dc.date.available2024-02-14T05:20:46Z-
dc.date.issued2023-
dc.identifier.citationDurdiev D. K. KERNEL DETERMINATION PROBLEM FOR ONE PARABOLIC EQUATION WITH MEMORY / D. K. Durdiev, Zh. Z. Nuriddinov. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 2. — P. 86-98.en
dc.identifier.issn2414-3952online
dc.identifier.otherhttps://umjuran.ru/index.php/umj/article/view/579-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/129435-
dc.description.abstractThis paper studies the inverse problem of determining a multidimensional kernel function of an integral term which depends on the time variable t and (n-1)-dimensional space variable x'= (x1, ..., xn-1) in the n-dimensional diffusion equation with a time-variable coefficient at the Laplacian of a direct problem solution. Given a known kernel function, a Cauchy problem is investigated as a direct problem. The integral term in the equation has convolution form: the kernel function is multiplied by a solution of the direct problem’s elliptic operator. As an overdetermination condition, the result of the direct question on the hyperplane xn = 0 is used. An inverse question is replaced by an auxiliary one, which is more suitable for further investigation. After that, the last problem is reduced to an equivalent system of Volterra-type integral equations of the second order with respect to unknown functions. Applying the fixed point theorem to this system in Hölder spaces, we prove the main result of the paper, which is a local existence and uniqueness theorem.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.relation.ispartofUral Mathematical Journal. 2023. Volume 9. № 2en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectINVERSE PROBLEMen
dc.subjectRESOLVENTen
dc.subjectINTEGRAL EQUATIONen
dc.subjectFIXED POINT THEOREMen
dc.subjectEXISTENCEen
dc.subjectUNIQUENESSen
dc.titleKERNEL DETERMINATION PROBLEM FOR ONE PARABOLIC EQUATION WITH MEMORYen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi59690653-
dc.identifier.doi10.15826/umj.2023.2.007en
local.description.firstpage86-
local.description.lastpage98-
local.issue2-
local.volume9-
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2023_9_2_008.pdf175,09 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons