Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/129431
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Baransky, V. A. | en |
dc.contributor.author | Senchonok, T. A. | en |
dc.date.accessioned | 2024-02-14T05:20:45Z | - |
dc.date.available | 2024-02-14T05:20:45Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Baransky V. A. ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE / V. A. Baransky, T. A. Senchonok. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 2. — P. 36-45. | en |
dc.identifier.issn | 2414-3952 | online |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/view/670 | - |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/129431 | - |
dc.description.abstract | An integer partition, or simply, a partition is a nonincreasing sequence λ = (λ1,λ2,…) of nonnegative integers that contains only a finite number of nonzero components. The length ℓ(λ) of a partition λ is the number of its nonzero components. For convenience, a partition λ will often be written in the form λ = (λ1,…,λt), where t ≥ ℓ(λ); i.e., we will omit the zeros, starting from some zero component, not forgetting that the sequence is infinite. Let there be natural numbers i,j ∈{1,…,ℓ(λ) + 1} such that (1) λi - 1 ≥ λi+1; (2) λj-1 ≥ λj+1; (3) λi = λj+δ, where δ ≥ 2. We will say that the partition η = (λ1,…,λi - 1,…,λj + 1,…,λn) is obtained from a partition λ = (λ1,…,λi,…,λj,…,λn) by an elementary transformation of the first type. Let λi - 1 ≥ λi+1, where i ≤ ℓ(λ). A transformation that replaces λ by η = (λ1,…,λi-1,λi - 1,λi+1,…) will be called an elementary transformation of the second type. The authors showed earlier that a partition μ dominates a partition λ if and only if λ can be obtained from μ by a finite number (possibly a zero one) of elementary transformations of the pointed types. Let λ and μ be two arbitrary partitions such that μ dominates λ. This work aims to study the shortest sequences of elementary transformations from μ to λ. As a result, we have built an algorithm that finds all the shortest sequences of this type. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.relation.ispartof | Ural Mathematical Journal. 2023. Volume 9. № 2 | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | INTEGER PARTITION | en |
dc.subject | FERRERS DIAGRAM | en |
dc.subject | INTEGER PARTITIONS LATTICE | en |
dc.subject | ELEMENTARY TRANSFORMATION | en |
dc.title | ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 59690644 | - |
dc.identifier.doi | 10.15826/umj.2023.2.003 | en |
local.description.firstpage | 36 | - |
local.description.lastpage | 45 | - |
local.issue | 2 | - |
local.volume | 9 | - |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2023_9_2_004.pdf | 141,09 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons