Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/129431
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBaransky, V. A.en
dc.contributor.authorSenchonok, T. A.en
dc.date.accessioned2024-02-14T05:20:45Z-
dc.date.available2024-02-14T05:20:45Z-
dc.date.issued2023-
dc.identifier.citationBaransky V. A. ON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICE / V. A. Baransky, T. A. Senchonok. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 2. — P. 36-45.en
dc.identifier.issn2414-3952online
dc.identifier.otherhttps://umjuran.ru/index.php/umj/article/view/670-
dc.identifier.urihttp://elar.urfu.ru/handle/10995/129431-
dc.description.abstractAn integer partition, or simply, a partition is a nonincreasing sequence λ = (λ1,λ2,…) of nonnegative integers that contains only a finite number of nonzero components. The length ℓ(λ) of a partition λ is the number of its nonzero components. For convenience, a partition λ will often be written in the form λ = (λ1,…,λt), where t ≥ ℓ(λ); i.e., we will omit the zeros, starting from some zero component, not forgetting that the sequence is infinite. Let there be natural numbers i,j ∈{1,…,ℓ(λ) + 1} such that (1) λi - 1 ≥ λi+1; (2) λj-1 ≥ λj+1; (3) λi = λj+δ, where δ ≥ 2. We will say that the partition η = (λ1,…,λi - 1,…,λj + 1,…,λn) is obtained from a partition λ = (λ1,…,λi,…,λj,…,λn) by an elementary transformation of the first type. Let λi - 1 ≥ λi+1, where i ≤ ℓ(λ). A transformation that replaces λ by η = (λ1,…,λi-1,λi - 1,λi+1,…) will be called an elementary transformation of the second type. The authors showed earlier that a partition μ dominates a partition λ if and only if λ can be obtained from μ by a finite number (possibly a zero one) of elementary transformations of the pointed types. Let λ and μ be two arbitrary partitions such that μ dominates λ. This work aims to study the shortest sequences of elementary transformations from μ to λ. As a result, we have built an algorithm that finds all the shortest sequences of this type.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.relation.ispartofUral Mathematical Journal. 2023. Volume 9. № 2en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectINTEGER PARTITIONen
dc.subjectFERRERS DIAGRAMen
dc.subjectINTEGER PARTITIONS LATTICEen
dc.subjectELEMENTARY TRANSFORMATIONen
dc.titleON SEQUENCES OF ELEMENTARY TRANSFORMATIONS IN THE INTEGER PARTITIONS LATTICEen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi59690644-
dc.identifier.doi10.15826/umj.2023.2.003en
local.description.firstpage36-
local.description.lastpage45-
local.issue2-
local.volume9-
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2023_9_2_004.pdf141,09 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons