Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/129429
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Arestov, Vitalii V. | en |
dc.date.accessioned | 2024-02-14T05:20:43Z | - |
dc.date.available | 2024-02-14T05:20:43Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Arestov Vitalii V. APPROXIMATION OF DIFFERENTIATION OPERATORS BY BOUNDED LINEAR OPERATORS IN LEBESGUE SPACES ON THE AXIS AND RELATED PROBLEMS IN THE SPACES OF (p,q) -MULTIPLIERS AND THEIR PREDUAL SPACES / Vitalii V. Arestov. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 2. — P. 4-27. | en |
dc.identifier.issn | 2414-3952 | online |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/view/701 | - |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/129429 | - |
dc.description.abstract | We consider a variant En,k(N;r,r;p,p) of the four-parameter Stechkin problem En,k(N;r,s;p,q) on the best approximation of differentiation operators of order k on the class of n times differentiable functions (0<k<n) in Lebesgue spaces on the real axis. We discuss the state of research in this problem and related problems in the spaces of multipliers of Lebesgue spaces and their predual spaces. We give two-sided estimates for En,k(N;r,r;p,p) . The paper is based on the author's talk at the S.B. Stechkin's International Workshop-Conference on Function Theory (Kyshtym, Chelyabinsk region, August 1–10, 2023). | en |
dc.description.sponsorship | This work was supported by the Russian Science Foundation, project no. 22-21-00526, https://rscf.ru/project/22-21-00526/ | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.relation.ispartof | Ural Mathematical Journal. 2023. Volume 9. № 2 | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | DIFFERENTIATION OPERATOR | en |
dc.subject | STECHKIN'S PROBLEM | en |
dc.subject | KOLMOGOROV INEQUALITY | en |
dc.subject | (P,Q) –MULTIPLIER | en |
dc.subject | PREDUAL SPACE FOR THE SPACE OF (P,Q) -MULTIPLIERS | en |
dc.title | APPROXIMATION OF DIFFERENTIATION OPERATORS BY BOUNDED LINEAR OPERATORS IN LEBESGUE SPACES ON THE AXIS AND RELATED PROBLEMS IN THE SPACES OF (p,q) -MULTIPLIERS AND THEIR PREDUAL SPACES | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 59690638 | - |
dc.identifier.doi | 10.15826/umj.2023.2.001 | en |
local.description.firstpage | 4 | - |
local.description.lastpage | 27 | - |
local.issue | 2 | - |
local.volume | 9 | - |
local.fund.rsf | 22-21-00526 | - |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2023_9_2_002.pdf | 323,36 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons