Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/127441
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Dutta, Indran | en |
dc.contributor.author | Kar, Sukhendu | en |
dc.date.accessioned | 2023-10-27T08:13:07Z | - |
dc.date.available | 2023-10-27T08:13:07Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Dutta Indran. TERNARY *-BANDS ARE GLOBALLY DETERMINED / Indran Dutta, Sukhendu Kar. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 1. — P. 64-77. | en |
dc.identifier.issn | 2414-3952 | online |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/view/429 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/127441 | - |
dc.description.abstract | A non-empty set S together with the ternary operation denoted by juxtaposition is said to be ternary semigroup if it satisfies the associativity property ab(cde)=a(bcd)e=(abc)de for all a,b,c,d,e∈S. The global set of a ternary semigroup S is the set of all non empty subsets of S and it is denoted by P(S). If S is a ternary semigroup then P(S) is also a ternary semigroup with a naturally defined ternary multiplication. A natural question arises: ``Do all properties of S remain the same in P(S)?'' %one may ask is that ``is all property of S remain same in P(S)?". The global determinism problem is a part of this question. A class K of ternary semigroups is said to be globally determined if for any two ternary semigroups S1 and S2 of K, P(S1)≅P(S2) implies that S1≅S2. So it is interesting to find the class of ternary semigroups which are globally determined. Here we will study the global determinism of ternary ∗-band. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.relation.ispartof | Ural Mathematical Journal. 2023. Volume 9. № 1 | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | RECTANGULAR TERNARY BAND | en |
dc.subject | INVOLUTION TERNARY SEMIGROUP | en |
dc.subject | INVOLUTION TERNARY BAND | en |
dc.subject | TERNARY *-BAND | en |
dc.subject | TERNARY PROJECTION | en |
dc.title | TERNARY *-BANDS ARE GLOBALLY DETERMINED | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 54265305 | |
dc.identifier.doi | 10.15826/umj.2023.1.005 | en |
local.description.firstpage | 64 | |
local.description.lastpage | 77 | |
local.issue | 1 | |
local.volume | 9 | |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2023_9_1_006.pdf | 156,73 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons