Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/127439
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Baransky, V. A. | en |
dc.contributor.author | Senchonok, T. A. | en |
dc.date.accessioned | 2023-10-27T08:13:07Z | - |
dc.date.available | 2023-10-27T08:13:07Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Baransky V. A. AROUND THE ERDÖS–GALLAI CRITERION / V. A. Baransky, T. A. Senchonok. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 1. — P. 29-48. | en |
dc.identifier.issn | 2414-3952 | online |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/view/640 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/127439 | - |
dc.description.abstract | By an (integer) partition we mean a non-increasing sequence λ = (λ1,λ2,…) of non-negative integers that contains a finite number of non-zero components. A partition λ is said to be graphic if there exists a graph G such that λ = dptG, where we denote by dptG the degree partition of G composed of the degrees of its vertices, taken in non-increasing order and added with zeros. In this paper, we propose to consider another criterion for a partition to be graphic, the ht-criterion, which, in essence, is a convenient and natural reformulation of the well-known Erdös-Gallai criterion for a sequence to be graphical. The ht-criterion fits well into the general study of lattices of integer partitions and is convenient for applications. The paper shows the equivalence of the Gale-Ryser criterion on the realizability of a pair of partitions by bipartite graphs, the ht-criterion and the Erdös-Gallai criterion. New proofs of the Gale-Ryser criterion and the Erdös-Gallai criterion are given. It is also proved that for any graphical partition there exists a realization that is obtained from some splitable graph in a natural way. A number of information of an overview nature is also given on the results previously obtained by the authors which are close in subject matter to those considered in this paper. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.relation.ispartof | Ural Mathematical Journal. 2023. Volume 9. № 1 | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | INTEGER PARTITION | en |
dc.subject | THRESHOLD GRAPH | en |
dc.subject | BIPARTITE GRAPH | en |
dc.subject | BIPARTITE-THRESHOLD GRAPH | en |
dc.subject | FERRERS DIAGRAM | en |
dc.title | AROUND THE ERDÖS–GALLAI CRITERION | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 54265303 | |
dc.identifier.doi | 10.15826/umj.2023.1.003 | en |
local.description.firstpage | 29 | |
local.description.lastpage | 48 | |
local.issue | 1 | |
local.volume | 9 | |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2023_9_1_004.pdf | 223,15 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons