Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/127439
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBaransky, V. A.en
dc.contributor.authorSenchonok, T. A.en
dc.date.accessioned2023-10-27T08:13:07Z-
dc.date.available2023-10-27T08:13:07Z-
dc.date.issued2023-
dc.identifier.citationBaransky V. A. AROUND THE ERDÖS–GALLAI CRITERION / V. A. Baransky, T. A. Senchonok. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 1. — P. 29-48.en
dc.identifier.issn2414-3952online
dc.identifier.otherhttps://umjuran.ru/index.php/umj/article/view/640
dc.identifier.urihttp://elar.urfu.ru/handle/10995/127439-
dc.description.abstractBy an (integer) partition we mean a non-increasing sequence λ = (λ1,λ2,…) of non-negative integers that contains a finite number of non-zero components. A partition λ is said to be graphic if there exists a graph G such that λ = dptG, where we denote by dptG the degree partition of G composed of the degrees of its vertices, taken in non-increasing order and added with zeros. In this paper, we propose to consider another criterion for a partition to be graphic, the ht-criterion, which, in essence, is a convenient and natural reformulation of the well-known Erdös-Gallai criterion for a sequence to be graphical. The ht-criterion fits well into the general study of lattices of integer partitions and is convenient for applications. The paper shows the equivalence of the Gale-Ryser criterion on the realizability of a pair of partitions by bipartite graphs, the ht-criterion and the Erdös-Gallai criterion. New proofs of the Gale-Ryser criterion and the Erdös-Gallai criterion are given. It is also proved that for any graphical partition there exists a realization that is obtained from some splitable graph in a natural way. A number of information of an overview nature is also given on the results previously obtained by the authors which are close in subject matter to those considered in this paper.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.relation.ispartofUral Mathematical Journal. 2023. Volume 9. № 1en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectINTEGER PARTITIONen
dc.subjectTHRESHOLD GRAPHen
dc.subjectBIPARTITE GRAPHen
dc.subjectBIPARTITE-THRESHOLD GRAPHen
dc.subjectFERRERS DIAGRAMen
dc.titleAROUND THE ERDÖS–GALLAI CRITERIONen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi54265303
dc.identifier.doi10.15826/umj.2023.1.003en
local.description.firstpage29
local.description.lastpage48
local.issue1
local.volume9
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2023_9_1_004.pdf223,15 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons