Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/127436
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Volchkova, N. P. | en |
dc.contributor.author | Volchkov, V. V. | en |
dc.date.accessioned | 2023-10-27T08:13:06Z | - |
dc.date.available | 2023-10-27T08:13:06Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Volchkova N. P. ON ONE ZALCMAN PROBLEM FOR THE MEAN VALUE OPERATOR / N. P. Volchkova, V. V. Volchkov. — Text : electronic // Ural Mathematical Journal. — 2023. — Volume 9. — № 1. — P. 187-200. | en |
dc.identifier.issn | 2414-3952 | online |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/view/532 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/127436 | - |
dc.description.abstract | Let D′(Rn) and E′(Rn) be the spaces of distributions and compactly supported distributions on Rn, n≥2, respectively, let E′♮(Rn) be the space of all radial (invariant under rotations of the space Rn) distributions in E′(Rn), let T˜ be the spherical transform (Fourier--Bessel transform) of a distribution T∈E′♮(Rn), and let Z+(T˜) be the set of all zeros of an even entire function T˜ lying in the half-plane Rez≥0 and not belonging to the negative part of the imaginary axis. Let σr be the surface delta function concentrated on the sphere Sr={x∈Rn:|x|=r}. The problem of L. Zalcman on reconstructing a distribution f∈D′(Rn) from known convolutions f∗σr1 and f∗σr2 is studied. This problem is correctly posed only under the condition r1/r2∉Mn, where Mn is the set of all possible ratios of positive zeros of the Bessel function Jn/2−1. The paper shows that if r1/r2∉Mn, then an arbitrary distribution f∈D′(Rn) can be expanded into an unconditionally convergent series f=∑λ∈Z+(Ω˜r1)∑μ∈Z+(Ω˜r2)4λμ(λ2−μ2)Ω˜′r1(λ)Ω˜′r2(μ)(Pr2(Δ)((f∗σr2)∗Ωλr1)−Pr1(Δ)((f∗σr1)∗Ωμr2)) in the space D′(Rn), where Δ is the Laplace operator in Rn, Pr is an explicitly given polynomial of degree [(n+5)/4], and Ωr and Ωλr are explicitly constructed radial distributions supported in the ball |x|≤r. The proof uses the methods of harmonic analysis, as well as the theory of entire and special functions. By a similar technique, it is possible to obtain inversion formulas for other convolution operators with radial distributions. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.relation.ispartof | Ural Mathematical Journal. 2023. Volume 9. № 1 | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | COMPACTLY SUPPORTED DISTRIBUTIONS | en |
dc.subject | FOURIER-BESSEL TRANSFORM | en |
dc.subject | TWO-RADII THEOREM | en |
dc.subject | INVERSION FORMULAS | en |
dc.title | ON ONE ZALCMAN PROBLEM FOR THE MEAN VALUE OPERATOR | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 54265317 | |
dc.identifier.doi | 10.15826/umj.2023.1.017 | en |
local.description.firstpage | 187 | |
local.description.lastpage | 200 | |
local.issue | 1 | |
local.volume | 9 | |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2023_9_1_018.pdf | 215,17 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons