Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/122289
Название: | Matrix Resolving Functions in the Linear Group Pursuit Problem with Fractional Derivatives |
Авторы: | Machtakova, A. I. Petrov, N. N. |
Дата публикации: | 2022 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Machtakova A. I. Matrix Resolving Functions in the Linear Group Pursuit Problem with Fractional Derivatives / A. I. Machtakova, N. N. Petrov. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 76-89. |
Аннотация: | In finite-dimensional Euclidean space, we analyze the problem of pursuit of a single evader by a group of pursuers, which is described by a system of differential equations with Caputo fractional derivatives of order α. The goal of the group of pursuers is the capture of the evader by at least m different pursuers (the instants of capture may or may not coincide). As a mathematical basis, we use matrix resolving functions that are generalizations of scalar resolving functions. We obtain sufficient conditions for multiple capture of a single evader in the class of quasi-strategies. We give examples illustrating the results obtained. |
Ключевые слова: | DIFFERENTIAL GAME GROUP PURSUIT PURSUER EVADER FRACTIONAL DERIVATIVES |
URI: | http://elar.urfu.ru/handle/10995/122289 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор РИНЦ: | 49240246 |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2022.1.008 |
Источники: | Ural Mathematical Journal. 2022. Volume 8. № 1 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2022_8_1_009.pdf | 184,72 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons