Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/122276
Название: Combined Algorithms for Constructing a Solution to the Time-Optimal Problem in Three-Dimensional Space Based on the Selection of Extreme Points of the Scattering Surface
Авторы: Lebedev, P. D.
Uspenskii, A. A.
Дата публикации: 2022
Издатель: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Библиографическое описание: Lebedev P. D. Combined Algorithms for Constructing a Solution to the Time-Optimal Problem in Three-Dimensional Space Based on the Selection of Extreme Points of the Scattering Surface / P. D. Lebedev, A. A. Uspenskii. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 115-126.
Аннотация: A class of time-optimal control problems in three-dimensional space with a spherical velocity vector is considered. A smooth regular curve Γ is chosen as the target set. We distinguish pseudo-vertices that are characteristic points on Γ and responsible for the appearance of a singularity in the function of the optimal result. We reveal analytical relationships between pseudo-vertices and extreme points of a singular set belonging to the family of bisectors. The found analytical representation for the extreme points of the bisector is taken as the basis for numerical algorithms for constructing a singular set. The effectiveness of the developed approach for solving non-smooth dynamic problems is illustrated by an example of numerical-analytical construction of resolving structures for the time-optimal control problem.
Ключевые слова: TIME-OPTIMAL PROBLEM
DISPERSING SURFACE
BISECTOR
PSEUDOVERTEX
EXTREME POINT
CURVATURE
SINGULAR SET
FRENET-SERRET FRAME (TNB FRAME)
URI: http://elar.urfu.ru/handle/10995/122276
Условия доступа: Creative Commons Attribution License
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
Идентификатор РИНЦ: 50043146
ISSN: 2414-3952
DOI: 10.15826/umj.2022.2.009
Источники: Ural Mathematical Journal. 2022. Volume 8. № 2
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2022_8_2_010.pdf461,91 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons