Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/122276
Название: | Combined Algorithms for Constructing a Solution to the Time-Optimal Problem in Three-Dimensional Space Based on the Selection of Extreme Points of the Scattering Surface |
Авторы: | Lebedev, P. D. Uspenskii, A. A. |
Дата публикации: | 2022 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Lebedev P. D. Combined Algorithms for Constructing a Solution to the Time-Optimal Problem in Three-Dimensional Space Based on the Selection of Extreme Points of the Scattering Surface / P. D. Lebedev, A. A. Uspenskii. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 115-126. |
Аннотация: | A class of time-optimal control problems in three-dimensional space with a spherical velocity vector is considered. A smooth regular curve Γ is chosen as the target set. We distinguish pseudo-vertices that are characteristic points on Γ and responsible for the appearance of a singularity in the function of the optimal result. We reveal analytical relationships between pseudo-vertices and extreme points of a singular set belonging to the family of bisectors. The found analytical representation for the extreme points of the bisector is taken as the basis for numerical algorithms for constructing a singular set. The effectiveness of the developed approach for solving non-smooth dynamic problems is illustrated by an example of numerical-analytical construction of resolving structures for the time-optimal control problem. |
Ключевые слова: | TIME-OPTIMAL PROBLEM DISPERSING SURFACE BISECTOR PSEUDOVERTEX EXTREME POINT CURVATURE SINGULAR SET FRENET-SERRET FRAME (TNB FRAME) |
URI: | http://elar.urfu.ru/handle/10995/122276 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор РИНЦ: | 50043146 |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2022.2.009 |
Источники: | Ural Mathematical Journal. 2022. Volume 8. № 2 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2022_8_2_010.pdf | 461,91 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons