Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/122274
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKosari, S.en
dc.contributor.authorSheikholeslami, S. M.en
dc.contributor.authorChellali, M.en
dc.contributor.authorHajjari, M.en
dc.date.accessioned2023-05-12T07:49:04Z-
dc.date.available2023-05-12T07:49:04Z-
dc.date.issued2022-
dc.identifier.citationRestrained Roman Reinforcement Number in Graphs / S. Kosari, S. M. Sheikholeslami, M. Chellali, M. Hajjari. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 81-93.en
dc.identifier.issn2414-3952online
dc.identifier.otherhttps://umjuran.ru/index.php/umj/article/view/458
dc.identifier.urihttp://elar.urfu.ru/handle/10995/122274-
dc.description.abstractA restrained Roman dominating function (RRD-function) on a graph G = (V,E) is a function f from V into {0, 1, 2} satisfying: (i) every vertex u with f(u) = 0 is adjacent to a vertex v with f(v) = 2; (ii) the subgraph induced by the vertices assigned 0 under f has no isolated vertices. The weight of an RRD-function is the sum of its function value over the whole set of vertices, and the restrained Roman domination number is the minimum weight of an RRD-function on G. In this paper, we begin the study of the restrained Roman reinforcement number rrR(G) of a graph G defined as the cardinality of a smallest set of edges that we must add to the graph to decrease its restrained Roman domination number. We first show that the decision problem associated with the restrained Roman reinforcement problem is NP-hard. Then several properties as well as some sharp bounds of the restrained Roman reinforcement number are presented. In particular it is established that rrR(T) = 1 for every tree T of order at least three.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relation.ispartofUral Mathematical Journal. 2022. Volume 8. № 2en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectRESTRAINED ROMAN DOMINATION, RESTRAINED ROMAN REINFORCEMENTen
dc.titleRestrained Roman Reinforcement Number in Graphsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi50043144
dc.identifier.doi10.15826/umj.2022.2.007en
local.description.firstpage81
local.description.lastpage93
local.issue2
local.volume8
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2022_8_2_008.pdf183,13 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons