Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/122274
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Kosari, S. | en |
dc.contributor.author | Sheikholeslami, S. M. | en |
dc.contributor.author | Chellali, M. | en |
dc.contributor.author | Hajjari, M. | en |
dc.date.accessioned | 2023-05-12T07:49:04Z | - |
dc.date.available | 2023-05-12T07:49:04Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Restrained Roman Reinforcement Number in Graphs / S. Kosari, S. M. Sheikholeslami, M. Chellali, M. Hajjari. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 81-93. | en |
dc.identifier.issn | 2414-3952 | online |
dc.identifier.other | https://umjuran.ru/index.php/umj/article/view/458 | |
dc.identifier.uri | http://elar.urfu.ru/handle/10995/122274 | - |
dc.description.abstract | A restrained Roman dominating function (RRD-function) on a graph G = (V,E) is a function f from V into {0, 1, 2} satisfying: (i) every vertex u with f(u) = 0 is adjacent to a vertex v with f(v) = 2; (ii) the subgraph induced by the vertices assigned 0 under f has no isolated vertices. The weight of an RRD-function is the sum of its function value over the whole set of vertices, and the restrained Roman domination number is the minimum weight of an RRD-function on G. In this paper, we begin the study of the restrained Roman reinforcement number rrR(G) of a graph G defined as the cardinality of a smallest set of edges that we must add to the graph to decrease its restrained Roman domination number. We first show that the decision problem associated with the restrained Roman reinforcement problem is NP-hard. Then several properties as well as some sharp bounds of the restrained Roman reinforcement number are presented. In particular it is established that rrR(T) = 1 for every tree T of order at least three. | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences | en |
dc.publisher | Ural Federal University named after the first President of Russia B.N. Yeltsin | en |
dc.relation.ispartof | Ural Mathematical Journal. 2022. Volume 8. № 2 | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | RESTRAINED ROMAN DOMINATION, RESTRAINED ROMAN REINFORCEMENT | en |
dc.title | Restrained Roman Reinforcement Number in Graphs | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.rsi | 50043144 | |
dc.identifier.doi | 10.15826/umj.2022.2.007 | en |
local.description.firstpage | 81 | |
local.description.lastpage | 93 | |
local.issue | 2 | |
local.volume | 8 | |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2022_8_2_008.pdf | 183,13 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons