Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/122262
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorNithya, M.en
dc.contributor.authorSugapriya, C.en
dc.contributor.authorSelvakumar, S.en
dc.contributor.authorJeganathan, K.en
dc.contributor.authorHarikrishnan, T.en
dc.date.accessioned2023-05-12T07:48:56Z-
dc.date.available2023-05-12T07:48:56Z-
dc.date.issued2022-
dc.identifier.citationA Markovian Two Commodity Queueing-Inventory System with Compliment Item and Classical Retrial Facility / M. Nithya, C. Sugapriya, S. Selvakumar, K. Jeganathan, T. Harikrishnan. — Text : electronic // Ural Mathematical Journal. — 2022. — Volume 8. — № 1. — P. 90-116.en
dc.identifier.issn2414-3952online
dc.identifier.otherhttps://umjuran.ru/index.php/umj/article/view/355
dc.identifier.urihttp://elar.urfu.ru/handle/10995/122262-
dc.description.abstractThis paper explores the two-commodity (TC) inventory system in which commodities are classified as major and complementary items. The system allows a customer who has purchased a free product to conduct Bernoulli trials at will. Under the Bernoulli schedule, any entering customer will quickly enter an orbit of infinite capability during the stock-out time of the major item. The arrival of a retrial customer in the system follows a classical retrial policy. These two products’ re-ordering process occurs under the (s,Q) and instantaneous ordering policies for the major and complimentary items, respectively. A comprehensive analysis of the retrial queue, including the system’s stability and the steady-state distribution of the retrial queue with the stock levels of two commodities, is carried out. The various system operations are measured under the stability condition. Finally, numerical evidence has shown the benefits of the proposed model under different random situations.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherN.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciencesen
dc.publisherUral Federal University named after the first President of Russia B.N. Yeltsinen
dc.relation.ispartofUral Mathematical Journal. 2022. Volume 8. № 1en
dc.rightsCreative Commons Attribution Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en
dc.subjectMARKOV PROCESSen
dc.subjectCOMPLIMENT ITEMen
dc.subjectINFINITE ORBITen
dc.subjectWAITING TIMEen
dc.titleA Markovian Two Commodity Queueing-Inventory System with Compliment Item and Classical Retrial Facilityen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi49240247
dc.identifier.doi10.15826/umj.2022.1.009en
local.description.firstpage90
local.description.lastpage116
local.issue1
local.volume8
Располагается в коллекциях:Ural Mathematical Journal

Файлы этого ресурса:
Файл Описание РазмерФормат 
umj_2022_8_1_010.pdf312,8 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons