Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/121809
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMalakouti, S. M.en
dc.date.accessioned2023-04-17T12:46:41Z-
dc.date.available2023-04-17T12:46:41Z-
dc.date.issued2023-
dc.identifier.citationSeyed Matin Malakouti. Prediction of Wind Speed and Power with LightGBM and Grid Search: Case Study Based on Scada System in Turkey / Seyed Matin Malakouti // International Journal of Energy Production and Management. — 2023. — Vol. 8. Iss. 1. — P. 35-40.en
dc.identifier.issn2056-3272print
dc.identifier.issn2056-3280online
dc.identifier.urihttp://elar.urfu.ru/handle/10995/121809-
dc.description.abstractDue to the speeding up of climate change, there is an urgent need to switch from using fossil fuels to producing energy using renewable energy sources. This change has to happen as soon as feasibly possible. Thus, in this article, to forecast wind speed and wind energy output in Turkey, the Light Gradient Boosting Machine (LightGBM) approach was applied, the hyperparameters of the LightGBM were tuned to the grid search method, and finally some evaluation criteria such as root mean square error and R2 were calculated to show the performances of the LightGBM. Fortunately, an R2 value of 0.98 for forecasting wind speed was found after 25 s. Additionally, the assessment criterion R2 =1 for predicting the production power of the wind turbine was attained after 90 s.en
dc.language.isoenen
dc.publisherInternational Information and Engineering Technology Association (IIETA)en
dc.publisherUral Federal Universityen
dc.publisherУральский федеральный университетru
dc.relation.ispartofInternational Journal of Energy Production and Management. 2023. Vol. 8. Iss. 1en
dc.subjectGRID SEARCH METHODen
dc.subjectLIGHT GRADIENT BOOSTING MACHINEen
dc.subjectSCADA SYSTEMen
dc.subjectWIND TURBINEen
dc.titlePrediction of Wind Speed and Power with LightGBM and Grid Search: Case Study Based on Scada System in Turkeyen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsihttps://elibrary.ru/item.asp?id=50520934-
dc.identifier.doi10.18280/ijepm.080105-
local.description.firstpage35-
local.description.lastpage40-
local.issue1-
local.volume8-
local.contributorMalakouti, Seyed Matinen
Располагается в коллекциях:International Journal of Energy Production and Management

Файлы этого ресурса:
Файл Описание РазмерФормат 
ijepm_2023_v8_1_05.pdf1,35 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.