Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/118246
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorAmeen, I. G.en
dc.contributor.authorElkot, N. A.en
dc.contributor.authorZaky, M. A.en
dc.contributor.authorHendy, A. S.en
dc.contributor.authorDoha, E. H.en
dc.date.accessioned2022-10-19T05:23:55Z-
dc.date.available2022-10-19T05:23:55Z-
dc.date.issued2021-
dc.identifier.citationA pseudo-spectral scheme for systems of two-point boundary value problems with left and right sided fractional derivatives and related integral equations / I. G. Ameen, N. A. Elkot, M. A. Zaky et al. // CMES - Computer Modeling in Engineering and Sciences. — 2021. — Vol. 128. — Iss. 1. — P. 21-41.en
dc.identifier.issn15261492-
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85108971129&doi=10.32604%2fcmes.2021.015310&partnerID=40&md5=867d3093b591cd475d7f18de1107cb47link
dc.identifier.urihttp://elar.urfu.ru/handle/10995/118246-
dc.description.abstractWe target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left- and right-sided fractional derivatives. The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations. Then, a Legendre-based spectral collocation method is developed for solving the transformed system. Therefore, we can make good use of the advantages of the Gauss quadrature rule. We present the construction and analysis of the collocation method. These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler-Lagrange equations. Two numerical examples are given to confirm the convergence analysis and robustness of the scheme. © 2021 Tech Science Press. All rights reserved.en
dc.description.sponsorshipRussian Foundation for Basic Research, РФФИ: 19-01-00019en
dc.description.sponsorshipThe Russian Foundation for Basic Research (RFBR) Grant No. 19-01-00019.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherTech Science Pressen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceCMES - Computer Modeling in Engineering and Sciencesen
dc.subjectCONVERGENCE ANALYSISen
dc.subjectSPECTRAL COLLOCATION METHODen
dc.subjectTWO-POINT BOUNDARY VALUE PROBLEMSen
dc.subjectWEAKLY SINGULAR INTEGRAL EQUATIONSen
dc.subjectBOUNDARY VALUE PROBLEMSen
dc.subjectEQUATIONS OF MOTIONen
dc.subjectNUMERICAL METHODSen
dc.subjectOPTIMAL CONTROL SYSTEMSen
dc.subjectCONVERGENCE ANALYSISen
dc.subjectEULER-LAGRANGE EQUATIONSen
dc.subjectFRACTIONAL DERIVATIVESen
dc.subjectFRACTIONAL OPTIMAL CONTROLSen
dc.subjectGAUSS QUADRATURE RULESen
dc.subjectSPECTRAL COLLOCATION METHODen
dc.subjectTWO POINT BOUNDARY VALUE PROBLEMSen
dc.subjectWEAKLY SINGULAR INTEGRAL EQUATIONSen
dc.subjectINTEGRAL EQUATIONSen
dc.titleA pseudo-spectral scheme for systems of two-point boundary value problems with left and right sided fractional derivatives and related integral equationsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.rsi46854078-
dc.identifier.doi10.32604/cmes.2021.015310-
dc.identifier.scopus85108971129-
local.contributor.employeeAmeen, I.G., Department of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypten
local.contributor.employeeElkot, N.A., Department of Mathematics, Faculty of Science, Cairo University, Giza, 12613, Egypten
local.contributor.employeeZaky, M.A., Department of Applied Mathematics, Physics Division, National Research Centre, Dokki, Cairo, 12622, Egypten
local.contributor.employeeHendy, A.S., Department of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, 620002, Russian Federation, Department of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.contributor.employeeDoha, E.H., Department of Mathematics, Faculty of Science, Cairo University, Giza, 12613, Egypten
local.description.firstpage21-
local.description.lastpage41-
local.issue1-
local.volume128-
dc.identifier.wos000672695700003-
local.contributor.departmentDepartment of Mathematics, Faculty of Science, Al-Azhar University, Cairo, Egypten
local.contributor.departmentDepartment of Mathematics, Faculty of Science, Cairo University, Giza, 12613, Egypten
local.contributor.departmentDepartment of Applied Mathematics, Physics Division, National Research Centre, Dokki, Cairo, 12622, Egypten
local.contributor.departmentDepartment of Computational Mathematics and Computer Science, Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, 620002, Russian Federationen
local.contributor.departmentDepartment of Mathematics, Faculty of Science, Benha University, Benha, 13511, Egypten
local.identifier.pure22823295-
local.identifier.eid2-s2.0-85108971129-
local.fund.rffi19-01-00019-
local.identifier.wosWOS:000672695700003-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85108971129.pdf334,53 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.