Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/112185
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMilstein, G. N.en
dc.contributor.authorTretyakov, M. V.en
dc.date.accessioned2022-05-12T08:30:08Z-
dc.date.available2022-05-12T08:30:08Z-
dc.date.issued2000-
dc.identifier.citationMilstein G. N. Numerical Algorithms for Semilinear Parabolic Equations with Small Parameter Based on Approximation of Stochastic Equations / G. N. Milstein, M. V. Tretyakov // Mathematics of Computation. — 2000. — Vol. 69. — Iss. 229. — P. 237-267.en
dc.identifier.issn0025-5718-
dc.identifier.otherAll Open Access, Bronze, Green3
dc.identifier.urihttp://hdl.handle.net/10995/112185-
dc.description.abstractThe probabilistic approach is used for constructing special layer methods to solve the Cauchy problem for semilinear parabolic equations with small parameter. Despite their probabilistic nature these methods are nevertheless deterministic. The algorithms are tested by simulating the Burgers equation with small viscosity and the generalized KPP-equation with a small parameter.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Mathematical Societyen1
dc.publisherAmerican Mathematical Society (AMS)en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceMath. Comput.2
dc.sourceMathematics of Computationen
dc.subjectPROBABILISTIC REPRESENTATIONS FOR EQUATIONS OF MATHEMATICAL PHYSICSen
dc.subjectREACTION-DIFFUSION SYSTEMSen
dc.subjectSEMILINEAR PARABOLIC EQUATIONSen
dc.subjectSTOCHASTIC DIFFERENTIAL EQUATIONS WITH SMALL NOISEen
dc.titleNumerical Algorithms for Semilinear Parabolic Equations with Small Parameter Based on Approximation of Stochastic Equationsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.scopus0034394607-
local.contributor.employeeMilstein, G.N., Weierstrass-Inst. Angew. Anal./S., Mohrenstr. 39, D-10117 Berlin, Germany; Tretyakov, M.V., Department of Mathematics, Ural State University, Lenin str. 51, 620083 Ekaterinburg, Russian Federationen
local.description.firstpage237-
local.description.lastpage267-
local.issue229-
local.volume69-
local.contributor.departmentWeierstrass-Inst. Angew. Anal./S., Mohrenstr. 39, D-10117 Berlin, Germany; Department of Mathematics, Ural State University, Lenin str. 51, 620083 Ekaterinburg, Russian Federationen
local.identifier.eid2-s2.0-0034394607-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File SizeFormat 
2-s2.0-0034394607.pdf457,06 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.