Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/111336
Title: Symmetry Adapted Finite-Cluster Solver for Quantum Heisenberg Model in Two Dimensions: a Real-Space
Authors: Sinitsyn, V. E.
Bostrem, I. G.
Ovchinnikov, A. S.
Issue Date: 2007
Publisher: IOP Publishing
Citation: Sinitsyn V. E. Symmetry Adapted Finite-Cluster Solver for Quantum Heisenberg Model in Two Dimensions: a Real-Space / V. E. Sinitsyn, I. G. Bostrem, A. S. Ovchinnikov. — DOI 10.21538/0134-4889-2020-26-3-219-234 // Journal of Physics A: Mathematical and Theoretical. — 2007. — Vol. 40. — Iss. 4. — P. 645-668.
Abstract: We present a quantum cluster solver for the spin-S Heisenberg model on a twodimensional lattice. The formalism is based on the real-space renormalization procedure and uses the lattice point group-theoretical analysis and non-Abelian SU(2) spin symmetry technique. The exact diagonalization procedure is used twice at each renormalization group step. The method is applied to the spinhalf antiferromagnet on a square lattice, and a calculation of local observables is demonstrated. A symmetry-based truncation procedure is suggested and verified numerically © 2010 IOP Publishing Ltd.
URI: http://hdl.handle.net/10995/111336
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 64849106986
ISSN: 1751-8113
DOI: 10.21538/0134-4889-2020-26-3-219-234
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-64849106986.pdf296,55 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.