Please use this identifier to cite or link to this item:
http://hdl.handle.net/10995/111254
Title: | Automorphisms of a Distance-Regular Graph with Intersection Array {30,22,9;1,3,20} |
Other Titles: | Автоморфизмы дистанционно регулярного графа с массивом пересечений {30, 22, 9; 1, 3, 20} |
Authors: | Efimov, K. S. Makhnev, A. A. |
Issue Date: | 2020 |
Publisher: | Krasovskii Institute of Mathematics and Mechanics Krasovskii Institute of Mathematics and Mechanics UB RAS |
Citation: | Efimov K. S. Automorphisms of a Distance-Regular Graph with Intersection Array {30,22,9;1,3,20} [Автоморфизмы дистанционно регулярного графа с массивом пересечений {30, 22, 9; 1, 3, 20}] / K. S. Efimov, A. A. Makhnev // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 3. — P. 23-31. |
Abstract: | A distance-regular graph Γ of diameter 3 is called a Shilla graph if it has the second eigenvalue θ1 = a3. In this case a = a3 divides k and we set b = b(Γ) = k/a. Koolen and Park obtained the list of intersection arrays for Shilla graphs with b = 3. There exist graphs with intersection arrays {12, 10, 5; 1, 1, 8} and {12, 10, 3; 1, 3, 8}. The nonexistence of graphs with intersection arrays {12, 10, 2; 1, 2, 8}, {27, 20, 10; 1, 2, 18}, {42, 30, 12; 1, 6, 28}, and {105, 72, 24; 1, 12, 70} was proved earlier. In this paper we study the automorphisms of a distance-regular graph Γ with intersection array {30, 22, 9; 1, 3, 20}, which is a Shilla graph with b = 3. Assume that a is a vertex of Γ, G = Aut(Γ) is a nonsolvable group, G¯ = G/S(G), and T¯ is the socle of G¯. Then T¯ ∼= L2(7), A7, A8, or U3(5). If Γ is arc-transitive, then T is an extension of an irreducible F2U3(5)-module V by U3(5) and the dimension of V over F3 is 20, 28, 56, 104, or 288. © 2020 Sverre Raffnsoe. All rights reserved. |
Keywords: | GRAPH AUTOMORPHISM SHILLA GRAPH |
URI: | http://hdl.handle.net/10995/111254 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 85095685665 |
PURE ID: | 13944861 |
ISSN: | 0134-4889 |
metadata.dc.description.sponsorship: | Funding Agency: This work was supported by the Russian Foundation for Basic Research - the National Natural Science Foundation of China (project no. 20-51-53013_a). |
Appears in Collections: | Научные публикации, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-85095685665.pdf | 220,92 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.