Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/111246
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBabenko, A. G.en
dc.contributor.authorKryakin, Yu. V.en
dc.date.accessioned2022-05-12T08:15:21Z-
dc.date.available2022-05-12T08:15:21Z-
dc.date.issued2020-
dc.identifier.citationBabenko A. G. On the Norms of Boman–Shapiro Difference Operators [О нормах разностных операторов Бомана — Шапиро] / A. G. Babenko, Yu. V. Kryakin // Trudy Instituta Matematiki i Mekhaniki UrO RAN. — 2020. — Vol. 26. — Iss. 4. — P. 64-75.en
dc.identifier.issn0134-4889-
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.urihttp://hdl.handle.net/10995/111246-
dc.description.abstractFor given k ∈ N and h > 0, an exact inequality kW2k(f, h)kC ≤ Ck kfkC is considered on the space C = C(R) of continuous functions bounded on the real axis R = (−∞, ∞) for the Boman–Shapiro difference operator W2k(f, h)(x):= (−h1)k Z−hh (2kk)−1 ∆b 2tkf(x) ( 1 − |ht| ) dt, where ∆b 2tkf(x):= P (−1)j(2jk)f(x + jt − kt) is the 2k j=0 central finite difference of a function f of order 2k with step t. For each fixed k ∈ N, the exact constant Ck in the above inequality is the norm of the operator W2k(·, h) from C to C. It is proved that Ck is independent of h and increases in k. A simple method is proposed for the calculation of the constant C∗ = limk→∞ Ck = 2.6699263 . . . with accuracy 10−7. We also consider the problem of extending a continuous function f from the interval [−1, 1] to the axis R. For extensions gf := gf,k,h, k ∈ N, 0 < h < 1/(2k), of functions f ∈ C[−1, 1], we obtain new two-sided estimates for the exact constant Ck∗ in the inequality kW2k(gf, h)kC(R) ≤ Ck∗ ω2k(f, h), where ω2k(f, h) is the modulus of continuity of f of order 2k. Specifically, for any natural k ≥ 6 and any h ∈ (0, 1/(2k)), we prove the double inequality 5/12 ≤ Ck∗ < (2 + e−2) C∗. © 2020 Krasovskii Institute of Mathematics and Mechanics. All rights reserved.en
dc.description.sponsorshipThis work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University), and as part of research conducted in the Ural Mathematical Center.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherKrasovskii Institute of Mathematics and Mechanicsen1
dc.publisherKrasovskii Institute of Mathematics and Mechanics UB RASen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTr. Inst. Mat. Meh. UrO RAN2
dc.sourceTrudy Instituta Matematiki i Mekhaniki UrO RANen
dc.subjectDIFFERENCE OPERATORen
dc.subjectKTH MODULUS OF CONTINUITYen
dc.subjectNORM ESTIMATEen
dc.titleOn the Norms of Boman–Shapiro Difference Operatorsen
dc.title.alternativeО нормах разностных операторов Бомана — Шапироru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.scopus85103627058-
local.contributor.employeeBabenko, A.G., Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg620108, Russian Federation, Ural Federal University, Yekaterinburg, 620000, Russian Federation; Kryakin, Yu.V., Mathematical Institute of University of Wroclaw, Wroclaw, 48-300, Polanden
local.description.firstpage64-
local.description.lastpage75-
local.issue4-
local.volume26-
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg620108, Russian Federation; Ural Federal University, Yekaterinburg, 620000, Russian Federation; Mathematical Institute of University of Wroclaw, Wroclaw, 48-300, Polanden
local.identifier.pure20232940-
local.identifier.eid2-s2.0-85103627058-
local.fund.rffi18-01-00336
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85103627058.pdf244,39 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.