Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111177
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBalkourani, G.en
dc.contributor.authorDamartzis, T.en
dc.contributor.authorBrouzgou, A.en
dc.contributor.authorTsiakaras, P.en
dc.date.accessioned2022-05-12T08:13:58Z-
dc.date.available2022-05-12T08:13:58Z-
dc.date.issued2022-
dc.identifier.citationCost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review / G. Balkourani, T. Damartzis, A. Brouzgou et al. // Sensors. — 2022. — Vol. 22. — Iss. 1. — 355.en
dc.identifier.issn1424-8220-
dc.identifier.otherAll Open Access, Gold, Green3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111177-
dc.description.abstractThe high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts’ synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu-Co-and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.en
dc.description.sponsorshipAsst. Prof. Brouzgou, A., thankfully acknowledges the Research, Innovation and Excellence Structure (DEKA) of the University of Thessaly for the funding of the research program entitled: ‘Electrochemical (bio)sensors: synthesis of novel carbon monolayer-based nanoelectrodes for biomolecules detection’ and Ms Balkourani, G. (PhD student) thankfully acknowledges the Hellenic Foundation for Research and Innovation (HFRI), the PhD Fellowship grant. 25, 6816.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherMDPIen1
dc.publisherMDPI AGen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceSensors2
dc.sourceSensorsen
dc.subjectCOBALT OXIDE NANOMATERIALen
dc.subjectCOPPER OXIDE NANOMATERIALen
dc.subjectDIRECT GROWTHen
dc.subjectELECTROCHEMICAL SENSORen
dc.subjectGLUCOSE ELECTROOXI-DATION MECHANISMen
dc.subjectGRAPHENE-BASED NANOMATERIALSen
dc.subjectIN-SITU GROWTHen
dc.subjectLASER-INDUCEDen
dc.subjectNICKEL OXIDE NANOMATERIALen
dc.subjectPOLYMER FUNCTIONALIZEDen
dc.subjectREDUCED GRAPHENE OXIDEen
dc.subjectSYNTHESISen
dc.subjectCOBALT COMPOUNDSen
dc.subjectCOPPER OXIDESen
dc.subjectCOST EFFECTIVENESSen
dc.subjectELECTROCATALYSTSen
dc.subjectELECTROCHEMICAL ELECTRODESen
dc.subjectELECTROCHEMICAL SENSORSen
dc.subjectELECTROOXIDATIONen
dc.subjectGLUCOSEen
dc.subjectGRAPHENEen
dc.subjectGRAPHITE ELECTRODESen
dc.subjectMETALSen
dc.subjectNANOSTRUCTURED MATERIALSen
dc.subjectREDUCTIONen
dc.subjectSUBSTRATESen
dc.subjectSYNTHESIS (CHEMICAL)en
dc.subjectCOBALT OXIDE NANOMATERIALen
dc.subjectCOPPER OXIDE NANOMATERIALen
dc.subjectDIRECT GROWTHen
dc.subjectFUNCTIONALIZEDen
dc.subjectGLUCOSE ELECTROOXI-DATION MECHANISMen
dc.subjectGRAPHENE-BASED NANOMATERIALen
dc.subjectIN-SITU GROWTHen
dc.subjectLASER INDUCEDen
dc.subjectNICKEL OXIDE NANOMATERIALen
dc.subjectPOLYMER FUNCTIONALIZEDen
dc.subjectREDUCED GRAPHENE OXIDESen
dc.subjectNICKEL OXIDEen
dc.subjectGLUCOSEen
dc.subjectGRAPHITEen
dc.subjectNANOMATERIALen
dc.subjectOXIDEen
dc.subjectCOST BENEFIT ANALYSISen
dc.subjectELECTROCHEMICAL ANALYSISen
dc.subjectELECTRODEen
dc.subjectGENETIC PROCEDURESen
dc.subjectBIOSENSING TECHNIQUESen
dc.subjectCOST-BENEFIT ANALYSISen
dc.subjectELECTROCHEMICAL TECHNIQUESen
dc.subjectELECTRODESen
dc.subjectGLUCOSEen
dc.subjectGRAPHITEen
dc.subjectNANOSTRUCTURESen
dc.subjectOXIDESen
dc.titleCost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Reviewen
dc.typeReviewen
dc.typeinfo:eu-repo/semantics/reviewen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/s22010355-
dc.identifier.scopus85122107524-
local.contributor.employeeBalkourani, G., Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, Volos, 38334, Greece; Damartzis, T., Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, Sion, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland; Brouzgou, A., Department of Energy Systems, School of Technology, University of Thessaly, Geopolis, Regional Road Trikala-Larisa, Larisa, 41500, Greece; Tsiakaras, P., Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, Volos, 38334, Greece, Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation, Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), Yekaterinburg, 620990, Russian Federationen
local.issue1-
local.volume22-
dc.identifier.wos000741799200001-
local.contributor.departmentLaboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, Volos, 38334, Greece; Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, Sion, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland; Department of Energy Systems, School of Technology, University of Thessaly, Geopolis, Regional Road Trikala-Larisa, Larisa, 41500, Greece; Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation; Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), Yekaterinburg, 620990, Russian Federationen
local.identifier.pure29213444-
local.description.order355-
local.identifier.eid2-s2.0-85122107524-
local.identifier.wosWOS:000741799200001-
local.identifier.pmid35009895-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85122107524.pdf2,2 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.