Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/108587
Название: | On a Class of Edge-Transitive Distance-Regular Antipodal Covers of Complete Graphs |
Авторы: | Tsiovkina, L. Yu. |
Дата публикации: | 2021 |
Издатель: | N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences Ural Federal University named after the first President of Russia B.N. Yeltsin |
Библиографическое описание: | Tsiovkina L. Yu. On a Class of Edge-Transitive Distance-Regular Antipodal Covers of Complete Graphs / L. Yu. Tsiovkina. — DOI 10.15826/umj.2021.2.010. — Text : electronic // Ural Mathematical Journal. — 2021. — Volume 7. — № 2. — P. 136-158. |
Аннотация: | The paper is devoted to the problem of classification of edge-transitive distance-regular antipodal covers of complete graphs. This extends the classification of those covers that are arc-transitive, which has been settled except for some tricky cases that remain to be considered, including the case of covers satisfying condition c2=1 (which means that every two vertices at distance 2 have exactly one common neighbour). Here it is shown that an edge-transitive distance-regular antipodal cover of a complete graph with c2=1 is either the second neighbourhood of a vertex in a Moore graph of valency 3 or 7, or a Mathon graph, or a half-transitive graph whose automorphism group induces an affine 2-homogeneous group on the set of its fibres. Moreover, distance-regular antipodal covers of complete graphs with c2=1 that admit an automorphism group acting 2-homogeneously on the set of fibres (which turns out to be an approximation of the property of edge-transitivity of such cover), are described. A well-known correspondence between distance-regular antipodal covers of complete graphs with c2=1 and geodetic graphs of diameter two that can be viewed as underlying graphs of certain Moore geometries, allows us to effectively restrict admissible automorphism groups of covers under consideration by combining Kantor's classification of involutory automorphisms of these geometries together with the classification of finite 2-homogeneous permutation groups. |
Ключевые слова: | DISTANCE-REGULAR GRAPH ANTIPODAL COVER GEODETIC GRAPH ARC-TRANSITIVE GRAPH EDGE-TRANSITIVE GRAPH 2-TRANSITIVE GROUP 2-HOMOGENEOUS GROUP |
URI: | http://elar.urfu.ru/handle/10995/108587 |
Условия доступа: | Creative Commons Attribution License |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
ISSN: | 2414-3952 |
DOI: | 10.15826/umj.2021.2.010 |
Сведения о поддержке: | This work was supported by the Russian Science Foundation under grant no. 20-71-00122. |
Источники: | Ural Mathematical Journal. 2021. Volume 7. № 2 |
Располагается в коллекциях: | Ural Mathematical Journal |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
umj_2021_7_2_136-158.pdf | 279,86 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons