Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/108578
Title: Linearization of Poisson–Lie Structures on the 2d Euclidean and (1 + 1) Poincaré Groups
Authors: Ganbouri, B.
Mansouri, M. W.
Issue Date: 2021
Publisher: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences
Ural Federal University named after the first President of Russia B.N. Yeltsin
Citation: Ganbouri B. Linearization of Poisson–Lie Structures on the 2d Euclidean and (1 + 1) Poincaré Groups / B. Ganbouri, M. W. Mansouri. — DOI 10.15826/umj.2021.2.002. — Text : electronic // Ural Mathematical Journal. — 2021. — Volume 7. — № 2. — P. 33-42.
Abstract: The paper deals with linearization problem of Poisson-Lie structures on the (1+1) Poincaré and 2D Euclidean groups. We construct the explicit form of linearizing coordinates of all these Poisson-Lie structures. For this, we calculate all Poisson-Lie structures on these two groups mentioned above, through the correspondence with Lie Bialgebra structures on their Lie algebras which we first determine.
Keywords: POISSON-LIE GROUPS
LIE BIALGEBRAS
LINEARIZATION
URI: http://elar.urfu.ru/handle/10995/108578
Access: Creative Commons Attribution License
License text: https://creativecommons.org/licenses/by/4.0/
ISSN: 2414-3952
DOI: 10.15826/umj.2021.2.002
metadata.dc.description.sponsorship: We thank Professor Morad EL OUALI for interesting and helpful discussions. Also we thank th ereferees for their time and comments.
Origin: Ural Mathematical Journal. 2021. Volume 7. № 2
Appears in Collections:Ural Mathematical Journal

Files in This Item:
File Description SizeFormat 
umj_2021_7_2_33-42.pdf149,26 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons