Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/103261
Title: Germanium/MoS2: Competition between the growth of germanene and intercalation
Authors: Jiao, Z.
Yao, Q.
Rudenko, A. N.
Zhang, L.
Zandvliet, H. J. W.
Issue Date: 2020
Publisher: American Physical Society
Citation: Germanium/MoS2: Competition between the growth of germanene and intercalation / Z. Jiao, Q. Yao, A. N. Rudenko, et al. — DOI 10.1103/PhysRevB.102.205419 // Physical Review B. — 2020. — Vol. 102. — Iss. 20. — 205419.
Abstract: We have scrutinized the growth of germanium (Ge) on molybdenum disulfide (MoS2) using scanning tunneling microscopy and density functional theory calculations in order to resolve the still outstanding question whether Ge atoms prefer to intercalate between the MoS2 layers or rather form germanene islands on top of the MoS2 substrate. We found that, at a fixed growth temperature, germanene islands are formed on top of the MoS2 substrate at high deposition rates, whereas at low deposition rates the Ge intercalates between the MoS2 layers. Scanning tunneling spectra recorded on the germanene islands reveal a V-shaped density of states, which is one of the hallmarks of a two-dimensional Dirac material. The intercalated Ge clusters have a band gap of 0.5-0.6 eV. Density functional theory calculations have been conducted in order to study the stability and electronic band structure of several intercalated Ge cluster configurations. Based on these calculations we are able to identify two promising stable configurations that have a band gap that compares favorably well with the experimental observations. Scanning tunneling spectroscopy measurement recorded on the intercalated Ge clusters reveals signatures of Coulomb blockade. © 2020 American Physical Society.
Keywords: DENSITY FUNCTIONAL THEORY
DEPOSITION RATES
ENERGY GAP
GERMANIUM COMPOUNDS
GERMANIUM METALLOGRAPHY
LAYERED SEMICONDUCTORS
MOLYBDENUM COMPOUNDS
MOLYBDENUM METALLOGRAPHY
SCANNING TUNNELING MICROSCOPY
SUBSTRATES
DENSITY OF STATE
ELECTRONIC BAND STRUCTURE
GERMANIUMS (GE)
HIGH DEPOSITION RATES
MOLYBDENUM DISULFIDE
SCANNING TUNNELING SPECTROSCOPY
STABLE CONFIGURATION
TUNNELING SPECTRA
SULFUR COMPOUNDS
URI: http://elar.urfu.ru/handle/10995/103261
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85097151365
PURE ID: 20231665
826edc88-40d6-4afe-98d4-7c6ed5488523
ISSN: 24699950
DOI: 10.1103/PhysRevB.102.205419
metadata.dc.description.sponsorship: This work is part of the research program on 2D semiconductor crystals with Project No. FV157-TWOD, which is financed by the Netherlands Organization for Scientific Research (NWO). Z.J. thanks the China Scholarship Council for financial support. L.Z. acknowledges the financial support from the National Natural Science Foundation of China (Grants No. 11904094 and No. 51972106) and the Natural Science Foundation of Hunan, China (Grant No. 2019JJ50034).
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85097151365.pdf2,17 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.