Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/103156
Title: Inequalities for algebraic polynomials on an ellipse
Authors: Nikiforova, T. M.
Issue Date: 2020
Publisher: Krasovskii Institute of Mathematics and Mechanics
Citation: Nikiforova T. M. Inequalities for algebraic polynomials on an ellipse / T. M. Nikiforova. — DOI 10.15826/UMJ.2020.2.009 // Ural Mathematical Journal. — 2020. — Vol. 6. — Iss. 2. — P. 87-94.
Abstract: The paper presents new solutions to two classical problems of approximation theory. The first problem is to find the polynomial that deviates least from zero on an ellipse. The second one is to find the exact upper bound of the uniform norm on an ellipse with foci ±1 of the derivative of an algebraic polynomial with real coefficients normalized on the segment [-1, 1]. © 2020, Krasovskii Institute of Mathematics and Mechanics. All rights reserved.
Keywords: CHEBYSHEV POLYNOMIALS
DERIVATIVE OF A POLYNOMIAL
ELLIPSE
POLYNOMIAL
SEGMENT
UNIFORM NORM
URI: http://hdl.handle.net/10995/103156
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85099554245
PURE ID: 20513279
7fd3c1ab-aa84-4113-8221-cd2c54175d98
ISSN: 24143952
DOI: 10.15826/UMJ.2020.2.009
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85099554245.pdf125,81 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.