Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/102982
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPnvalova, V. V.en
dc.contributor.authorProsviryakov, E. Y.en
dc.date.accessioned2021-08-31T15:06:43Z-
dc.date.available2021-08-31T15:06:43Z-
dc.date.issued2020-
dc.identifier.citationPnvalova V. V. An exact solution of the convective Couette flow under the parabolic heating condition at the lower boundary of a fluid layer / V. V. Pnvalova, E. Y. Prosviryakov. — DOI 10.1063/5.0036691 // AIP Conference Proceedings. — 2020. — Vol. 2315. — 050021.en
dc.identifier.isbn9780735440579-
dc.identifier.issn0094243X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85098660986&doi=10.1063%2f5.0036691&partnerID=40&md5=3c3b26e8089f25d4f4d01574d60a53d2
dc.identifier.urihttp://hdl.handle.net/10995/102982-
dc.description.abstractA new exact solution of the Navier-Stokes equation for the convective flow of an infinite horizontal layer of a viscous incompressible fluid is obtained. Parabolic heating is specified at one of the layer boundaries. The other boundary of the fluid layer is permeable. The obtained exact solution generalizes the isothermal Couette flow and the Ostroumov- Binkh convective analogues. The proposed class of exact solutions takes mto account the horizontal change in hydrodynamic fields. The obtained solution analysis for the velocity and temperature fields is presented. The possibility of the existence of stagnation points and counterflow areas in a moving layer of a non-isothermal viscous incompressible fluid is demonstrated. © 2020 American Institute of Physics Inc.. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conf. Proc.2
dc.sourceAIP Conference Proceedingsen
dc.titleAn exact solution of the convective Couette flow under the parabolic heating condition at the lower boundary of a fluid layeren
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/5.0036691-
dc.identifier.scopus85098660986-
local.contributor.employeePnvalova, V.V., Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St., Ekaterinburg, 620049, Russian Federation, B.N. Yeltsin Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russian Federation
local.contributor.employeeProsviryakov, E.Y., Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St., Ekaterinburg, 620049, Russian Federation
local.volume2315-
local.contributor.departmentInstitute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya St., Ekaterinburg, 620049, Russian Federation
local.contributor.departmentB.N. Yeltsin Ural Federal University, 19 Mira St., Ekaterinburg, 620002, Russian Federation
local.identifier.pure20378138-
local.identifier.pure215499b7-b2ba-4de9-a9c4-ea7bf05fa2aauuid
local.description.order050021-
local.identifier.eid2-s2.0-85098660986-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85098660986.pdf228,89 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.