Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/102928
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChentsov, A. G.en
dc.contributor.authorSesekin, A. N.en
dc.date.accessioned2021-08-31T15:06:25Z-
dc.date.available2021-08-31T15:06:25Z-
dc.date.issued2021-
dc.identifier.citationChentsov A. G. Relaxation of the attainability problem for a linear control system of neutral type / A. G. Chentsov, A. N. Sesekin. — DOI 10.35634/VM210106 // Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Nauki. — 2021. — Vol. 31. — Iss. 1. — P. 70-88.en
dc.identifier.issn19949197-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85105365894&doi=10.35634%2fVM210106&partnerID=40&md5=c3fbdf91ab126047cb3bceedf1d5515b
dc.identifier.otherhttp://www.mathnet.ru/php/getFT.phtml?jrnid=vuu&paperid=756&what=fullt&option_lang=engm
dc.identifier.urihttp://hdl.handle.net/10995/102928-
dc.description.abstractThe problem of control of a linear system of neutral type with impulse constraints is developed. In addition, a given system of intermediate conditions is assumed. A setting is investigated in which a vanishingly small relaxation of the mentioned restrictions is allowed. In this regard, the attainability domain (AD) at a fixed time of the end of the process is replaced by a natural asymptotic analog, the attraction set (AS). To construct the latter, we use the construction of an extension in the class of finitely additive (f.-a.) measures used as generalized controls. It is shown that the AS coincides with the AD of the system in the class of generalized controls - f.-a. measures. The structure of the mentioned AS is investigated. © 2021 Udmurt State University. All rights reserved.en
dc.description.sponsorshipThe study was funded by RFBR, projects number 19-01-00371.en
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherUdmurt State Universityen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceVestn. Udmurt. Univ., Matematika, Mekhanika, Kompyuternye Nauki2
dc.sourceVestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp'yuternye Naukien
dc.subjectATTRACTION SETSen
dc.subjectFINITELY ADDITIVE MEASURESen
dc.subjectLINEAR SYSTEMS WITH TIME DELAY OF NEUTRAL TYPEen
dc.titleRelaxation of the attainability problem for a linear control system of neutral typeen
dc.titleРелаксация задачи о достижимости для линейной управляемой системы нейтрального типаru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.35634/VM210106-
dc.identifier.scopus85105365894-
local.contributor.employeeChentsov, A.G., N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620108, Russian Federation, Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.contributor.employeeSesekin, A.N., N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620108, Russian Federation, Department of Applied Mathematics and Mechanics, Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.description.firstpage70-
local.description.lastpage88-
local.issue1-
local.volume31-
local.contributor.departmentN.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620108, Russian Federation
local.contributor.departmentUral Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.contributor.departmentDepartment of Applied Mathematics and Mechanics, Ural Federal University, ul. Mira, 19, Yekaterinburg, 620002, Russian Federation
local.identifier.pure21198909-
local.identifier.eid2-s2.0-85105365894-
local.fund.rffi19-01-00371-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85105365894.pdf343,74 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.