Please use this identifier to cite or link to this item:
http://hdl.handle.net/10995/102482
Title: | Approximating the Minimum Length of Synchronizing Words Is Hard |
Authors: | Berlinkov, M. V. |
Issue Date: | 2014 |
Citation: | Berlinkov M. V. Approximating the Minimum Length of Synchronizing Words Is Hard / M. V. Berlinkov. — DOI 10.1007/s00224-013-9511-y // Theory of Computing Systems. — 2014. — Vol. 54. — Iss. 2. — P. 211-223. |
Abstract: | We prove that, unless P=NP, no polynomial-time algorithm can approximate the minimum length of reset words for a given synchronizing automaton within a constant factor. © 2013 Springer Science+Business Media New York. |
Keywords: | POLYNOMIAL-TIME APPROXIMATION SYNCHRONIZING AUTOMATA |
URI: | http://hdl.handle.net/10995/102482 |
Access: | info:eu-repo/semantics/openAccess |
SCOPUS ID: | 84895057541 |
PURE ID: | 336062 2a1af4f8-c31b-4773-a54e-12357bdc2b1b |
ISSN: | 14324350 |
DOI: | 10.1007/s00224-013-9511-y |
Appears in Collections: | Научные публикации, проиндексированные в SCOPUS и WoS CC |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-84895057541.pdf | 197,3 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.