Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101896
Title: Viability Theorem for Deterministic Mean Field Type Control Systems
Authors: Averboukh, Y.
Issue Date: 2018
Publisher: Springer Netherlands
Citation: Averboukh Y. Viability Theorem for Deterministic Mean Field Type Control Systems / Y. Averboukh. — DOI 10.1007/s11228-018-0479-2 // Set-Valued and Variational Analysis. — 2018. — Vol. 26. — Iss. 4. — P. 993-1008.
Abstract: A mean field type control system is a dynamical system in the Wasserstein space describing an evolution of a large population of agents with mean-field interaction under a control of a unique decision maker. We develop the viability theorem for the mean field type control system. To this end we introduce a set of tangent elements to the given set of probabilities. Each tangent element is a distribution on the tangent bundle of the phase space. The viability theorem for mean field type control systems is formulated in the classical way: the given set of probabilities on phase space is viable if and only if the set of tangent distributions intersects with the set of distributions feasible by virtue of dynamics. © 2018, Springer Science+Business Media B.V., part of Springer Nature.
Keywords: MEAN FIELD TYPE CONTROL SYSTEM
NONSMOOTH ANALYSIS IN THE WASSERSTEIN SPACE
TANGENT DISTRIBUTION
VIABILITY THEOREM
URI: http://hdl.handle.net/10995/101896
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85057845136
PURE ID: 8416709
d0592690-bf56-464a-b3bc-3db455219fe4
ISSN: 9276947
DOI: 10.1007/s11228-018-0479-2
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85057845136.pdf243,12 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.