Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101737
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPetrova, E. A.en
dc.contributor.authorShur, A. M.en
dc.date.accessioned2021-08-31T14:59:26Z-
dc.date.available2021-08-31T14:59:26Z-
dc.date.issued2019-
dc.identifier.citationPetrova E. A. Transition property for cube-free words / E. A. Petrova, A. M. Shur. — DOI 10.1007/978-3-030-19955-5_27 // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). — 2019. — Vol. 11532 LNCS. — P. 311-324.en
dc.identifier.isbn9783030199548-
dc.identifier.issn3029743-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068604352&doi=10.1007%2f978-3-030-19955-5_27&partnerID=40&md5=314d068b0d2f2a6e2fb88adfca652297
dc.identifier.otherhttp://arxiv.org/pdf/1812.11119m
dc.identifier.urihttp://hdl.handle.net/10995/101737-
dc.description.abstractWe study cube-free words over arbitrary non-unary finite alphabets and prove the following structural property: for every pair (u, v) of d-ary cube-free words, if u can be infinitely extended to the right and v can be infinitely extended to the left respecting the cube-freeness property, then there exists a “transition” word w over the same alphabet such that uwv is cube free. The crucial case is the case of the binary alphabet, analyzed in the central part of the paper. The obtained “transition property”, together with the developed technique, allowed us to solve cube-free versions of three old open problems by Restivo and Salemi. Besides, it has some further implications for combinatorics on words; e.g., it implies the existence of infinite cube-free words of very big subword (factor) complexity. © Springer Nature Switzerland AG 2019.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherSpringer Verlagen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLect. Notes Comput. Sci.2
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectARTIFICIAL INTELLIGENCEen
dc.subjectCOMPUTER SCIENCEen
dc.subjectCOMPUTERSen
dc.subjectBINARY ALPHABETSen
dc.subjectCOMBINATORICS ON WORDSen
dc.subjectFINITE ALPHABETen
dc.subjectSUB WORDSen
dc.subjectTRANSITION PROPERTIESen
dc.subjectGEOMETRYen
dc.titleTransition property for cube-free wordsen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1007/978-3-030-19955-5_27-
dc.identifier.scopus85068604352-
local.contributor.employeePetrova, E.A., Ural Federal University, Ekaterinburg, Russian Federation
local.contributor.employeeShur, A.M., Ural Federal University, Ekaterinburg, Russian Federation
local.description.firstpage311-
local.description.lastpage324-
local.volume11532 LNCS-
local.contributor.departmentUral Federal University, Ekaterinburg, Russian Federation
local.identifier.pure10263206-
local.identifier.purec2359594-49cf-4df0-95be-471c8f5a20b9uuid
local.identifier.eid2-s2.0-85068604352-
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85068604352.pdf666,48 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.