Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/101618
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTarasov, D. A.en
dc.contributor.authorTyagunov, A. G.en
dc.contributor.authorMilder, O. B.en
dc.date.accessioned2021-08-31T14:58:32Z-
dc.date.available2021-08-31T14:58:32Z-
dc.date.issued2020-
dc.identifier.citationTarasov D. A. Modeling the heat resistance of nickel-based superalloys by a deep learning neural network / D. A. Tarasov, A. G. Tyagunov, O. B. Milder. — DOI 10.1063/5.0026745 // AIP Conference Proceedings. — 2020. — Vol. 2293. — 140020.en
dc.identifier.isbn9780735440258-
dc.identifier.issn0094243X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097979986&doi=10.1063%2f5.0026745&partnerID=40&md5=3d8ad45cc769188bfc4bbe9905c8a8c0
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101618-
dc.description.abstractThe nickel-based superalloys are unique materials with complex alloying used in the manufacture of gas turbine engines. The alloys exhibit excellent resistance to mechanical and chemical degradation under the high loads and long-term isothermal exposures. The main service property of the alloy is its heat resistance, which is expressed by the tensile strength. Simulation of changes in the heat resistance is an important engineering problem, which would significantly simplify the design of new alloys. In this paper, we apply a deep learning neural network to predict the tensile strength values and to compare the predictive ability of the proposed approach. Also, the results are presented of the feed-forward neural network accounting changes in heat resistance vs isothermal exposures that are expressed in the complex Larson-Miller parameter. © 2020 American Institute of Physics Inc.. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conf. Proc.2
dc.sourceAIP Conference Proceedingsen
dc.subjectARTIFICIAL NEURAL NETWORKSen
dc.subjectDEEP LEARNINGen
dc.subjectLARSON-MILLER PARAMETERen
dc.subjectNICKEL-BASED SUPERALLOYSen
dc.subjectSIMULATIONen
dc.subjectTENSILE STRENGTHen
dc.titleModeling the heat resistance of nickel-based superalloys by a deep learning neural networken
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/5.0026745-
dc.identifier.scopus85097979986-
local.contributor.employeeTarasov, D.A., Ural Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeTyagunov, A.G., Ural Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeMilder, O.B., Ural Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.volume2293-
local.contributor.departmentUral Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.identifier.pure20389620-
local.identifier.puref4c5bc98-ea00-4945-9d6e-431d58c49d60uuid
local.description.order140020-
local.identifier.eid2-s2.0-85097979986-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85097979986.pdf433,18 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.