Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101563
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorMyasnikov, F. S.en
dc.contributor.authorIvanov, O. Yu.en
dc.date.accessioned2021-08-31T14:58:12Z-
dc.date.available2021-08-31T14:58:12Z-
dc.date.issued2020-
dc.identifier.citationMyasnikov F. S. Preclassification of remote monitoring data in change detection tasks / F. S. Myasnikov, O. Yu. Ivanov. — DOI 10.1063/5.0028409 // AIP Conference Proceedings. — 2020. — Vol. 2293. — 140007.en
dc.identifier.isbn9780735440258-
dc.identifier.issn0094243X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097981380&doi=10.1063%2f5.0028409&partnerID=40&md5=1e86b1270b4861574efd674751517050
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101563-
dc.description.abstractDetection of changes occurring on the Earth surface is one of the most important tasks of remote monitoring. It is noted that the traditional methods of detecting changes (basic components, subtraction, division, etc.) are not sufficiently effective when they are applied to the problems of remote sensing of the Earth. This is due to the fact that the images obtained by different systems under different conditions of illumination of the Earth surface have significant differences in their characteristics. To reduce the impact of qualitative differences on the result of processing, it is proposed to use a preliminary classification of objects in the images. The proposed algorithm was tested on the detection of deforestation according to the spacecraft data SPOT and Landsat Recommendations on the choice of parameters of the classification algorithm (frequency channels of images, quantitative and qualitative composition of classes, decision rules, etc.) are formulated. © 2020 American Institute of Physics Inc.. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conf. Proc.2
dc.sourceAIP Conference Proceedingsen
dc.titlePreclassification of remote monitoring data in change detection tasksen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/5.0028409-
dc.identifier.scopus85097981380-
local.contributor.employeeMyasnikov, F.S., Yeltsin Ural Federal University, Yekaterinburg, Russian Federation
local.contributor.employeeIvanov, O.Yu., Yeltsin Ural Federal University, Yekaterinburg, Russian Federation
local.volume2293-
dc.identifier.wos000636709500449-
local.contributor.departmentYeltsin Ural Federal University, Yekaterinburg, Russian Federation
local.identifier.pure5db3c520-2450-4d78-abfd-7e1dbef846cduuid
local.identifier.pure20390103-
local.description.order140007-
local.identifier.eid2-s2.0-85097981380-
local.identifier.wosWOS:000636709500449-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85097981380.pdf243,9 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.