Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/101544
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSotnikov, O. M.en
dc.contributor.authorMazurenko, V. V.en
dc.date.accessioned2021-08-31T14:58:05Z-
dc.date.available2021-08-31T14:58:05Z-
dc.date.issued2020-
dc.identifier.citationSotnikov O. M. Neural network agent playing spin Hamiltonian games on a quantum computer / O. M. Sotnikov, V. V. Mazurenko. — DOI 10.1088/1751-8121/ab73ad // Journal of Physics A: Mathematical and Theoretical. — 2020. — Vol. 53. — Iss. 13. — 135303.en
dc.identifier.issn17518113-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85082738741&doi=10.1088%2f1751-8121%2fab73ad&partnerID=40&md5=43f8afbf53fc225de7c64f60410d86a5
dc.identifier.otherhttp://arxiv.org/pdf/1904.02467m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101544-
dc.description.abstractQuantum computing is expected to provide new promising approaches for solving the most challenging problems in material science, communication, search, machine learning and other domains. However, due to the decoherence and gate imperfection errors modern quantum computer systems are characterized by a very complex, dynamical, uncertain and fluctuating computational environment. We develop an autonomous agent effectively interacting with such an environment to solve magnetism problems. By using reinforcement learning the agent is trained to find the best-possible approximation of a spin Hamiltonian ground state from self-play on quantum devices. We show that the agent can learn the entanglement to imitate the ground state of the quantum spin dimer. The experiments were conducted on quantum computers provided by IBM. To compensate the decoherence we use a local spin correction procedure derived from a general sum rule for spin-spin correlation functions of a quantum system with an even number of antiferromagnetically-coupled spins in the ground state. Our study paves a way to create a new family of neural network eigensolvers for quantum computers. © 2020 IOP Publishing Ltd.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherInstitute of Physics Publishingen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceJ. Phys. Math. Theor.2
dc.sourceJournal of Physics A: Mathematical and Theoreticalen
dc.subjectMACHINE LEARNINGen
dc.subjectQUANTUM COMPUTINGen
dc.subjectREINFORCEMENT LEARNINGen
dc.subjectSPIN MODELSen
dc.titleNeural network agent playing spin Hamiltonian games on a quantum computeren
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1088/1751-8121/ab73ad-
dc.identifier.scopus85082738741-
local.contributor.employeeSotnikov, O.M., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeMazurenko, V.V., Theoretical Physics and Applied Mathematics Department, Ural Federal University, Ekaterinburg, 620002, Russian Federation
local.issue13-
local.volume53-
dc.identifier.wos000519752400001-
local.contributor.departmentTheoretical Physics and Applied Mathematics Department, Ural Federal University, Ekaterinburg, 620002, Russian Federation
local.identifier.pure12443220-
local.description.order135303-
local.identifier.eid2-s2.0-85082738741-
local.identifier.wosWOS:000519752400001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85082738741.pdf3,19 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.