Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/101534
Title: Projective versions of the properties in the Scheepers Diagram
Authors: Osipov, A. V.
Issue Date: 2020
Publisher: Elsevier B.V.
Citation: Osipov A. V. Projective versions of the properties in the Scheepers Diagram / A. V. Osipov. — DOI 10.1016/j.topol.2020.107232 // Topology and its Applications. — 2020. — Vol. 278. — 107232.
Abstract: Let P be a topological property. A.V. Arhangel'skii calls X projectively P if every second countable continuous image of X is P. Lj.D.R. Kočinac characterized the classical covering properties of Menger, Rothberger, Hurewicz and Gerlits-Nagy in term of continuous images in Rω. In this paper we study the functional characterizations of all projective versions of the selection properties in the Scheepers Diagram. © 2020 Elsevier B.V.
Keywords: CP-THEORY
FUNCTION SPACES
PROJECTIVELY GERLITS-NAGY SPACE
PROJECTIVELY HUREWICZ SPACE
PROJECTIVELY MENGER SPACE
PROJECTIVELY ROTHBERGER SPACE
SCHEEPERS DIAGRAM
SELECTION PRINCIPLES
URI: http://hdl.handle.net/10995/101534
Access: info:eu-repo/semantics/openAccess
SCOPUS ID: 85083801796
PURE ID: 12653204
9ae429d8-1328-4d4d-94a0-9d5da188b866
ISSN: 1668641
DOI: 10.1016/j.topol.2020.107232
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85083801796.pdf289,64 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.