Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/101529Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Gabriyelyan, S. | en |
| dc.contributor.author | Osipov, A. V. | en |
| dc.date.accessioned | 2021-08-31T14:57:56Z | - |
| dc.date.available | 2021-08-31T14:57:56Z | - |
| dc.date.issued | 2020 | - |
| dc.identifier.citation | Gabriyelyan S. Topological properties of some function spaces / S. Gabriyelyan, A. V. Osipov. — DOI 10.1016/j.topol.2020.107248 // Topology and its Applications. — 2020. — Vol. 279. — 107248. | en |
| dc.identifier.issn | 1668641 | - |
| dc.identifier.other | Final | 2 |
| dc.identifier.other | All Open Access, Green | 3 |
| dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084351854&doi=10.1016%2fj.topol.2020.107248&partnerID=40&md5=c3c7226519dca3f36ad975dd4e6c15e2 | |
| dc.identifier.other | http://arxiv.org/pdf/2004.05321 | m |
| dc.identifier.uri | http://elar.urfu.ru/handle/10995/101529 | - |
| dc.description.abstract | Let Y be a metrizable space containing at least two points, and let X be a YI-Tychonoff space for some ideal I of compact sets of X. Denote by CI(X,Y) the space of continuous functions from X to Y endowed with the I-open topology. We prove that CI(X,Y) is Fréchet–Urysohn iff X has the property γI. We characterize zero-dimensional Tychonoff spaces X for which the space CI(X,2) is sequential. Extending the classical theorems of Gerlits, Nagy and Pytkeev we show that if Y is not compact, then Cp(X,Y) is Fréchet–Urysohn iff it is sequential iff it is a k-space iff X has the property γ. An analogous result is obtained for the space of bounded continuous functions taking values in a metrizable locally convex space. Denote by B1(X,Y) and B(X,Y) the space of Baire one functions and the space of all Baire functions from X to Y, respectively. If H is a subspace of B(X,Y) containing B1(X,Y), then H is metrizable iff it is a σ-space iff it has countable cs⁎-character iff X is countable. If additionally Y is not compact, then H is Fréchet–Urysohn iff it is sequential iff it is a k-space iff it has countable tightness iff Xℵ0 has the property γ, where Xℵ0 is the space X with the Baire topology. We show that if X is a Polish space, then the space B1(X,R) is normal iff X is countable. © 2020 Elsevier B.V. | en |
| dc.format.mimetype | application/pdf | en |
| dc.language.iso | en | en |
| dc.publisher | Elsevier B.V. | en |
| dc.rights | info:eu-repo/semantics/openAccess | en |
| dc.source | Topol. Appl. | 2 |
| dc.source | Topology and its Applications | en |
| dc.subject | BAIRE FUNCTION | en |
| dc.subject | CP(X,Y) | en |
| dc.subject | CS⁎-CHARACTER | en |
| dc.subject | FRÉCHET–URYSOHN | en |
| dc.subject | FUNCTION SPACE | en |
| dc.subject | IDEAL OF COMPACT SETS | en |
| dc.subject | K-SPACE | en |
| dc.subject | METRIC SPACE | en |
| dc.subject | NORMAL | en |
| dc.subject | SEQUENTIAL | en |
| dc.subject | Σ-SPACE | en |
| dc.title | Topological properties of some function spaces | en |
| dc.type | Article | en |
| dc.type | info:eu-repo/semantics/article | en |
| dc.type | info:eu-repo/semantics/publishedVersion | en |
| dc.identifier.doi | 10.1016/j.topol.2020.107248 | - |
| dc.identifier.scopus | 85084351854 | - |
| local.contributor.employee | Gabriyelyan, S., Department of Mathematics, Ben-Gurion University of the Negev, P.O. 653, Beer-Sheva, Israel | |
| local.contributor.employee | Osipov, A.V., Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russian Federation | |
| local.volume | 279 | - |
| local.contributor.department | Department of Mathematics, Ben-Gurion University of the Negev, P.O. 653, Beer-Sheva, Israel | |
| local.contributor.department | Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russian Federation | |
| local.identifier.pure | 12905129 | - |
| local.identifier.pure | 632ed029-7655-4d45-82f0-c17a1e5a621a | uuid |
| local.description.order | 107248 | - |
| local.identifier.eid | 2-s2.0-85084351854 | - |
| Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2-s2.0-85084351854.pdf | 480,03 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.