Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/101529
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGabriyelyan, S.en
dc.contributor.authorOsipov, A. V.en
dc.date.accessioned2021-08-31T14:57:56Z-
dc.date.available2021-08-31T14:57:56Z-
dc.date.issued2020-
dc.identifier.citationGabriyelyan S. Topological properties of some function spaces / S. Gabriyelyan, A. V. Osipov. — DOI 10.1016/j.topol.2020.107248 // Topology and its Applications. — 2020. — Vol. 279. — 107248.en
dc.identifier.issn1668641-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Green3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084351854&doi=10.1016%2fj.topol.2020.107248&partnerID=40&md5=c3c7226519dca3f36ad975dd4e6c15e2
dc.identifier.otherhttp://arxiv.org/pdf/2004.05321m
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101529-
dc.description.abstractLet Y be a metrizable space containing at least two points, and let X be a YI-Tychonoff space for some ideal I of compact sets of X. Denote by CI(X,Y) the space of continuous functions from X to Y endowed with the I-open topology. We prove that CI(X,Y) is Fréchet–Urysohn iff X has the property γI. We characterize zero-dimensional Tychonoff spaces X for which the space CI(X,2) is sequential. Extending the classical theorems of Gerlits, Nagy and Pytkeev we show that if Y is not compact, then Cp(X,Y) is Fréchet–Urysohn iff it is sequential iff it is a k-space iff X has the property γ. An analogous result is obtained for the space of bounded continuous functions taking values in a metrizable locally convex space. Denote by B1(X,Y) and B(X,Y) the space of Baire one functions and the space of all Baire functions from X to Y, respectively. If H is a subspace of B(X,Y) containing B1(X,Y), then H is metrizable iff it is a σ-space iff it has countable cs⁎-character iff X is countable. If additionally Y is not compact, then H is Fréchet–Urysohn iff it is sequential iff it is a k-space iff it has countable tightness iff Xℵ0 has the property γ, where Xℵ0 is the space X with the Baire topology. We show that if X is a Polish space, then the space B1(X,R) is normal iff X is countable. © 2020 Elsevier B.V.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherElsevier B.V.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceTopol. Appl.2
dc.sourceTopology and its Applicationsen
dc.subjectBAIRE FUNCTIONen
dc.subjectCP(X,Y)en
dc.subjectCS⁎-CHARACTERen
dc.subjectFRÉCHET–URYSOHNen
dc.subjectFUNCTION SPACEen
dc.subjectIDEAL OF COMPACT SETSen
dc.subjectK-SPACEen
dc.subjectMETRIC SPACEen
dc.subjectNORMALen
dc.subjectSEQUENTIALen
dc.subjectΣ-SPACEen
dc.titleTopological properties of some function spacesen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1016/j.topol.2020.107248-
dc.identifier.scopus85084351854-
local.contributor.employeeGabriyelyan, S., Department of Mathematics, Ben-Gurion University of the Negev, P.O. 653, Beer-Sheva, Israel
local.contributor.employeeOsipov, A.V., Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russian Federation
local.volume279-
local.contributor.departmentDepartment of Mathematics, Ben-Gurion University of the Negev, P.O. 653, Beer-Sheva, Israel
local.contributor.departmentKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russian Federation
local.identifier.pure12905129-
local.identifier.pure632ed029-7655-4d45-82f0-c17a1e5a621auuid
local.description.order107248-
local.identifier.eid2-s2.0-85084351854-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85084351854.pdf480,03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.