Please use this identifier to cite or link to this item:
http://elar.urfu.ru/handle/10995/101450Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Plaksin, A. | en |
| dc.date.accessioned | 2021-08-31T14:57:22Z | - |
| dc.date.available | 2021-08-31T14:57:22Z | - |
| dc.date.issued | 2020 | - |
| dc.identifier.citation | Plaksin A. Minimax and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations for Time-Delay Systems / A. Plaksin. — DOI 10.1007/s10957-020-01742-6 // Journal of Optimization Theory and Applications. — 2020. — Vol. 187. — Iss. 1. — P. 22-42. | en |
| dc.identifier.issn | 223239 | - |
| dc.identifier.other | Final | 2 |
| dc.identifier.other | All Open Access, Green | 3 |
| dc.identifier.other | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85091062596&doi=10.1007%2fs10957-020-01742-6&partnerID=40&md5=82e94861e61515493930e33e83be3d8e | |
| dc.identifier.other | http://arxiv.org/pdf/1901.04677 | m |
| dc.identifier.uri | http://elar.urfu.ru/handle/10995/101450 | - |
| dc.description.abstract | The paper deals with a Bolza optimal control problem for a dynamical system, whose motion is described by a delay differential equation under an initial condition defined by a piecewise continuous function. For the value functional in this problem, the Cauchy problem for the Hamilton–Jacobi–Bellman equation with coinvariant derivatives is considered. Minimax and viscosity solutions of the Cauchy problem are studied. It is proved that both of these solutions exist, are unique, and coincide with the value functional. © 2020, Springer Science+Business Media, LLC, part of Springer Nature. | en |
| dc.format.mimetype | application/pdf | en |
| dc.language.iso | en | en |
| dc.publisher | Springer | en |
| dc.rights | info:eu-repo/semantics/openAccess | en |
| dc.source | J. Optim. Theory Appl. | 2 |
| dc.source | Journal of Optimization Theory and Applications | en |
| dc.subject | COINVARIANT DERIVATIVES | en |
| dc.subject | HAMILTON–JACOBI EQUATIONS | en |
| dc.subject | MINIMAX SOLUTION | en |
| dc.subject | OPTIMAL CONTROL | en |
| dc.subject | TIME-DELAY SYSTEMS | en |
| dc.subject | VISCOSITY SOLUTION | en |
| dc.title | Minimax and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations for Time-Delay Systems | en |
| dc.type | Article | en |
| dc.type | info:eu-repo/semantics/article | en |
| dc.type | info:eu-repo/semantics/publishedVersion | en |
| dc.identifier.doi | 10.1007/s10957-020-01742-6 | - |
| dc.identifier.scopus | 85091062596 | - |
| local.contributor.employee | Plaksin, A., N.N. Krasovskii Institute of Mathematics and Mechanics (IMM UB RAS), Ural Federal University, Yekaterinburg, Russian Federation | |
| local.description.firstpage | 22 | - |
| local.description.lastpage | 42 | - |
| local.issue | 1 | - |
| local.volume | 187 | - |
| local.contributor.department | N.N. Krasovskii Institute of Mathematics and Mechanics (IMM UB RAS), Ural Federal University, Yekaterinburg, Russian Federation | |
| local.identifier.pure | 14157538 | - |
| local.identifier.pure | ff827daa-662c-4c67-884f-1231ecd51253 | uuid |
| local.identifier.eid | 2-s2.0-85091062596 | - |
| Appears in Collections: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2-s2.0-85091062596.pdf | 308,85 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.