Please use this identifier to cite or link to this item: http://elar.urfu.ru/handle/10995/101441
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTarasov, D. A.en
dc.contributor.authorMilder, O. B.en
dc.date.accessioned2021-08-31T14:57:17Z-
dc.date.available2021-08-31T14:57:17Z-
dc.date.issued2020-
dc.identifier.citationTarasov D. A. The inverse problem of spectral reflection prediction: Problems of framework selection / D. A. Tarasov, O. B. Milder. — DOI 10.1063/5.0026741 // AIP Conference Proceedings. — 2020. — Vol. 2293. — 140012.en
dc.identifier.isbn9780735440258-
dc.identifier.issn0094243X-
dc.identifier.otherFinal2
dc.identifier.otherAll Open Access, Bronze3
dc.identifier.otherhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85097986894&doi=10.1063%2f5.0026741&partnerID=40&md5=913b1e25409e7a3c2e584573bd7ba5b4
dc.identifier.urihttp://elar.urfu.ru/handle/10995/101441-
dc.description.abstractDigital image processing requires substantial computations for characterization. It is since the reliable color reproduction can be achieved by establishing the correspondence between the spectral reflectance of the printed surface and the amounts of deposited inks. The processing is implemented by using different mathematical models. Most of the color prediction models engage some mathematical techniques to predict spectral reflectance for a mixture of colorants that are characterized by absorption and scattering during the light propagation. However, few attempts were made to make a model for prediction the colorants values based on an observing spectrum. This work is devoted to application of artificial neural network approach for solving the inverse problem of spectral reflection prediction. This task has been considered unsolvable as it involves solving a system of the linear differential equations, in which the number of unknowns exceeds the number of equations. Our attempt is based on the assumption that the prediction of the initial colorants from spectral data is possible by analogy with the work of the color perception system in humans. The aim of our study is to offer an approach to the framework selection. The model is built in Matlab and shows satisfactory prediction accuracy. © 2020 American Institute of Physics Inc.. All rights reserved.en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherAmerican Institute of Physics Inc.en
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAIP Conf. Proc.2
dc.sourceAIP Conference Proceedingsen
dc.subjectARTIFICIAL NEURAL NETWORKSen
dc.subjectCOLOR REPRODUCTIONen
dc.subjectFRAMEWORKen
dc.subjectSPECTRAL REFLECTION PREDICTIONen
dc.subjectTRAINING SETen
dc.titleThe inverse problem of spectral reflection prediction: Problems of framework selectionen
dc.typeConference Paperen
dc.typeinfo:eu-repo/semantics/conferenceObjecten
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1063/5.0026741-
dc.identifier.scopus85097986894-
local.contributor.employeeTarasov, D.A., Ural Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.contributor.employeeMilder, O.B., Ural Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.volume2293-
local.contributor.departmentUral Federal University, Mira str., 19, Ekaterinburg, 620002, Russian Federation
local.identifier.pure20390950-
local.identifier.pure4322a148-c68b-4330-bb3d-2049d16df97duuid
local.description.order140012-
local.identifier.eid2-s2.0-85097986894-
Appears in Collections:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-85097986894.pdf327,52 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.