Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/100833
Название: Сравнительная характеристика различных вариантов количественного хроматографического анализа методом двойной стандартной добавки
Другие названия: Comparative characterization of different kinds of chromatographic quantification using the double standard addition method
Авторы: Зенкевич, И. Г.
Бархатова, Д. Д.
Белышева, М. Н.
Каминский, Н. А.
Карчуганова, Е. М.
Клавинг, А. В.
Коваленко, А. А.
Кривовичева, В. С.
Кузьмин, А. А.
Мельник, М. В.
Парамонова, П. С.
Попов, Р. А.
Потапенков, В. В.
Рашевский, А. А.
Сысоева, А. А.
Федорова, И. И.
Фирсов, А. А.
Zenkevich, I. G.
Barkhatova, D. D.
Belysheva, M. N.
Kaminskii, N. A.
Karchuganova, E. M.
Klaving, A. V.
Kovalenko, A. A.
Krivovicheva, V. S.
Kuz’min, A. A.
Mel’nik, M. V.
Paramonova, P. S.
Popov, R. A.
Potapenkov, V. V.
Rashevskii, A. A.
Sysoeva, A. A.
Fedorova, I. I.
Firsov, A. A.
Дата публикации: 2021
Библиографическое описание: Сравнительная характеристика различных вариантов количественного хроматографического анализа методом двойной стандартной добавки / И. Г. Зенкевич, Д. Д. Бархатова, М. Н. Белышева [и др.] // Аналитика и контроль. — 2021. — Том 25. — № 2. — С. 146-154.
Аннотация: Различные варианты обработки результатов количественного газохроматографического анализа способом двойной стандартной добавки сопоставлены по точности. Три основных из них: I – простое сравнение данных, получаемых с использованием однократной и двойной добавок, II – аппроксимация зависимости m(S) в координатах «площадь пика определяемого компонента» (S) – «масса добавки» (mдоб) методом наименьших квадратов по уравнению линейной регрессии и III–вычисление количеств определяемых компонентов (mx) по каждой из стандартных добавок с последующей линейной экстраполяцией их значений на «нулевую» стандартную добавку, mx(mдоб® 0). Показано, что результаты определений в различных вариантах стандартных добавок сопоставимы по точности, но несколько занижены относительно заданных количеств аналитов. Главной причиной таких систематических погрешностей является испарение растворителя при последовательном дозировании проб одних и тех же образцов в хроматограф. В результате площади пиков, определяемые после ввода стандартных добавок в образцы, оказываются несколько завышенными, что и приводит к занижению результатов. Второй (менее значимый) фактор – незначительное увеличение объема образцов за счет добавок определяемых компонентов. Отмечено, что погрешности определений различными вариантами способа стандартной добавки не превышают случайных составляющих погрешностей. Лучшие результаты (с учетом знаков отклонений) обеспечивает вычисление содержания определяемого аналита методом двойной стандартной добавки с экстраполяцией результатов на «нулевую» величину добавки. Для исключения влияния «человеческого фактора» (увеличение точности результатов в ходе анализа серий однотипных образцов за счет опыта аналитиков) все параллельные определения были проведены студентами бакалавриата Института химии Санкт-Петербургского государственного университета в ходе выполнения ими лабораторных работ. Такая орга­низация экспериментов повышает их достоверность, поскольку исключает зависимость результатов от различий в квалификации аналитиков.
Different algorithms for processing the quantitative gas chromatographic analysis data using the double standard addition method are compared for their accuracy. Three principal approaches are possible for such processing: I – simple comparison of values determined by single and double standard additions, II – approximation of «peak area of analyte» (S) – «mass of standard addition» (madd) dependence by the least squares method [linear regression, m(S)], and III – independent quantification of analyte with both standard additions followed by the linear extrapolation of two subresults on the socalled «zero standard addition», mx(madd ® 0). It is concluded that the quantitation results obtained using the various modes of the method are comparable in accuracy, but somewhat underestimated relative to the specified amounts of analytes. The principal reason of such systematic errors is the evaporation of the solvent during the successive injecting of the same samples into the gas chromatograph. Due to this reason the peak areas, measured after the standard addition, appear to be slightly increased and this leads to the systematic underestimation of the results. The second (less important) factor is the small increase of the sample volumes due to the addition of the components to be determined. It is confirmed that the systematic errors of different modes of standard addition are not exceeding the values of their random uncertainties. The optimal results (considering their signs of deviations) are provided using the double standard addition method with extrapolation of subresults on «zero standard addition». In order to exclude the possible influence of «human factor» (increasing the re­sults precision during the series of analyses of similar samples due to the rising experience of analytical chemists) all parallel measurements have been per­for­med by bachelor students of the Chemistry Institute of the St. Petersburg State University in the course of their laboratory practical works in chromatography. Such organization of experiments increases their credibility as it excluded the dependence of the results on the qualification of chemists.
Ключевые слова: КОЛИЧЕСТВЕННЫЙ ХРОМАТОГРАФИЧЕСКИЙ АНАЛИЗ
СПОСОБ ДВОЙНОЙ СТАНДАРТНОЙ ДОБАВК
РАЗЛИЧНЫЕ ВАРИАНТЫ ОБРАБОТКИ РЕЗУЛЬТАТОВ
ОСОБЕННОСТИ ПАРАЛЛЕЛЬНЫХ ОПРЕДЕЛЕНИЙ
QUANTITATIVE CHROMATOGRAPHIC ANALYSIS
DOUBLE STANDARD ADDITION
DIFFERENT KINDS OF DATA PROCESSING
«HUMAN FACTOR» FOR PARALLEL MEASUREMENTS
URI: http://elar.urfu.ru/handle/10995/100833
Идентификатор РИНЦ: 46230611
Идентификатор SCOPUS: 85121937736
ISSN: 2073-1450
2073-1442
DOI: 10.15826/analitika.2021.25.2.010
Сведения о поддержке: Студенческая лабораторная работа, результаты которой составили предмет настоящего сообщения, выполнена с использованием оборудования Ресурсного Центра «Методы анализа состава вещества» Санкт-Петербургского государственного университета. Авторы благодарят сотрудников Центра за содействие.
The students’ work, results of which are discussed in the current paper, was carried out using the equipment of the “Methods of analysis of substance’s composition” Resource Centre at the St. Petersburg State University. The authors are grateful to the staff of this Center for assistance.
Источники: Аналитика и контроль. 2021. Том 25. № 2
Располагается в коллекциях:Аналитика и контроль

Файлы этого ресурса:
Файл Описание РазмерФормат 
5146-11375_2021_2_146-154.pdf600,41 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.