Browsing by Subject OPTIMAL CONTROL

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
or enter first few letters:  
Showing results 1 to 20 of 46  next >
Issue DateTitleAuthor(s)
2018Admissible Controls in a Nonlinear Time-Optimal Problem with Phase ConstraintsKandoba, I. N.; Koz'min, I. V.; Novikov, D. A.
2017An Algorithm for Computing Boundary Points of Reachable Sets of Control Systems under Integral ConstraintsGusev, M. I.
2018Analysis of Economic Growth Models via Value Function DesignBagno, A. L.; Tarasyev, A. M.
2017Application of optimal control and stabilization to an infinite time horizon problem under constraintsKrasovskii, A. A.; Lebedev, P. D.; Tarasyev, A. M.
2017Asymptotic Expansion of a Solution for One Singularly Perturbed Optimal Control Problem in Rn with a Convex Integral Quality IndexShaburov, A. A.
2018Asymptotic Expansion of a Solution for the Singularly Perturbed Optimal Control Problem with a Convex Integral Quality Index and Smooth Control ConstraintsShaburov, A. A.
2020Asymptotic expansion of a solution of a singularly perturbed optimal control problem with a convex integral quality index, whose terminal part additively depends on slow and fast variablesDanilin, A. R.; Shaburov, A. A.
2019Asymptotic expansion of solution to singularly perturbed optimal control problem with convex integral quality functional with terminal part depending on slow and fast variablesDanilin, A. R.; Shaburov, A. A.
2023Asymptotic expansion of the solution to an optimal control problem for a linear autonomous system with a terminal convex quality index depending on slow and fast variablesKovrizhnykh, O. O.; Danilin, A. R.
2013Asymptotic representation of a solution to a singular perturbation linear time-optimal problemDanilin, A. R.; Kovrizhnykh, O. O.
2020Asymptotics of the Solution to a Singularly Perturbed Time-Optimal Control Problem with Two Small ParametersDanilin, A. R.; Kovrizhnykh, O. O.
2020Construction of Solutions to Control Problems for Fractional- Order Linear Systems Based on Approximation ModelsGomoyunov, M. I.; Lukoyanov, N. Y.
2020Construction of the Viability Set in a Problem of Chemotherapy of a Malignant Tumor Growing According to the Gompertz lawNovoselova, N. G.; Subbotina, N. N.
2016Degenerate Distributed Control Systems with Fractional Time DerivativePlekhanova, M. V.
2018Demand Functions in Dynamic GamesKrasovskii, N. A.; Tarasyev, A. M.
2022Dynamic Modeling of Professional Mobility in the Context of Labor Market PrecarizationTarasyev, A. A.; Agarkov, G. A.; Sushchenko, A. D.; Tarasyev, A. M.
2020Dynamic Programming Principle and Hamilton-jacobi-bellman Equations for Fractional-order SystemsGomoyunov, M. I.
2020An Evolutionary Approach to Passive Learning in Optimal Control ProblemsBlueschke, D.; Savin, I.; Blueschke-Nikolaeva, V.
2021Impulse control of a two-link manipulation robotFilippovich, D. Y.; Alekseevich, C. I.
2015Linear Programming and DynamicsAntipin, A. S.; Khoroshilova, E. V.