Browsing by Author Tarasov, D. A.

Jump to: 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
or enter first few letters:  
Showing results 1 to 20 of 41  next >
Issue DateTitleAuthor(s)
2021An accurate empirical formula for determining the density of heat-resistant nickel alloysTarasov, D. A.; Milder, O. B.; Tyagunov, A. G.
2015Application of the artificial neural network method for time series analysisСыдихов, А. Ш.; Тягунов, А. Г.; Сергеев, А. П.; Тарасов, Д. А.; Уразбаева, Р. Е.; Sydikhov, A. S.; Tyagunov, A. G.; Sergeev, A. P.; Tarasov, D. A.; Urazbaeva, R. E.
2020Approximating heat resistance of nickel-based superalloys by a sigmoidTarasov, D. A.; Tyagunov, A. G.; Milder, O. B.
2020Cognitive Neuroscience: Challenge of the TimeКиселев, С. Ю.; Павлова, С. В.; Касанов, Д. А.; Тарасов, Д. А.; Борисов, Г. И.; Kiselev, S. Yu.; Pavlova, S. V.; Kasanov, D. A.; Tarasov, D. A.; Borisov, G. I.
2022Determining the ideal initial printing colorants in electrophotography by the discrete gradation trajectoriesTarasov, D. A.; Milder, O. B.
2020The forward problem of spectral reflection prediction: Mutual match between framework selection and the training set volumeTarasov, D. A.; Milder, O. B.
2020Gradation trajectories of ideal initial printing colorants in electrophotography: Discrete computationTarasov, D. A.; Milder, O. B.
2017High variation subarctic topsoil pollutant concentration prediction using neural network residual krigingSergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Subbotina, I. E.; Shichkin, A. V.; Sergeeva, M. V.; Lvova, O. A.
2020The inverse problem of spectral reflection prediction: Problems of framework selectionTarasov, D. A.; Milder, O. B.
2020Mathematics and practice of color space invariants by the example of determining the gray balance for a digital printing systemTarasov, D. A.; Milder, O. B.
2018A method for language attribution based on assessment of text irregularityTarasov, D. A.
2020Modeling of changes in heat resistance of nickel-based alloys using bayesian artificial neural networksAnoshina, O. V.; Trubnikova, A. S.; Milder, O. B.; Tarasov, D. A.; Ganeev, A. A.; Tyagunov, A. G.
2017Modeling of surface dust concentration in snow cover at industrial area using neural networks and krigingSergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.
2020Modeling the heat resistance of nickel-based superalloys by a deep learning neural networkTarasov, D. A.; Tyagunov, A. G.; Milder, O. B.
2022Modeling the influence of the composition of refractory elements on the heat resistance of nickel alloys by a deep learning artificial neural networkTarasov, D. A.; Milder, O. B.; Tiagunov, A. G.
2018Multilayer perceptron, generalized regression neural network, and hybrid model in predicting the spatial distribution of impurity in the topsoil of urbanized areaSubbotina, I. E.; Buevich, A. G.; Shichkin, A. V.; Sergeev, A. P.; Tarasov, D. A.; Tyagunov, A. G.; Sergeeva, M. V.; Baglaeva, E. M.
2015The photographing works of artСлавных, В. А.; Тарасов, Д. А.; Филимонов, В. В.; Slavnykh, V. A.; Tarasov, D. A.; Filimonov, V. V.
2020Printing paper as a reflector with idealized properties: How to link the paper industry and printing artTarasov, D. A.; Tyagunov, A. G.; Milder, O. B.
2015Quantitative assessment of irregularity of printed font drawing and its impact on the reading speedТарасов, Д. А.; Сергеев, А. П.; Тягунов, А. Г.; Арапова, С. П.; Арапов, С. Ю.; Tarasov, D. A.; Sergeev, A. P.; Tyagunov, A. G.; Arapova, S. P.; Arapov, S. Y.
2023Structural changes in the melt of a heat-resistant nickel alloy as phase transition of the second orderMil'der, O. B.; Tarasov, D. A.; Tyagunov, A. G.; Tsepelev, V. S.; V'yukhin, V. V.; Levonyan, A. L.; Anoshina, O. V.