деформаций грунтов основания и существующих дефектах колонн и подкрановых конструкций. Недостаточная жесткость колонн может иметь своим следствием в будущем повышенный износ крановых колес и рельсов.

В процессе экспериментальных исследований были выполнены измерения фибровых деформаций колонн при действии крановых нагрузок с целью оценить напряженное состояние колонн. Измерения показали, что приращение напряжений в подкрановой ветви колонны от крановых нагрузок составляло не более 300 кгс/см². Имея ввиду относительно невысокий уровень напряжений от постоянной нагрузки, можно утверждать, что несущая способность и устойчивость колонн при существующих крановых нагрузках вполне обеспечены.

КОЭФФИЦИЕНТЫ ФОРМЫ СЕЧЕНИЯ ПРОФИЛЕЙ АРОЧНЫХ ОБОЛОЧЕК ИЗ ВАЛЬЦОВАННЫХ ПРОФИЛИРОВАННЫХ

Г.Ю. ПОПУЛОВА

Уральский государственный технический университет

Разработка методики расчета длинных цилиндрических оболочек из вальцованных профилированных листов обусловлена их конструктивными особенностями. Оболочки собираются из профилей корытообразного сечения толщиной 1 мм. Для предотвращения потери местной устойчивости стенок профиля при гибке, их выполняют гофрированными (рис. 1). Эти поперечные рифления приводят к повышенной деформативности оболочек в целом. Вследствие этого, при расчете оболочек определяющим будет являться расчет их общей устойчивости.

Рис.1 Цилиндрические оболочки из вальцованных профилированных листов а- общая схема; б- поперечное сечение оболочки холодного здания; в- поперечное сечение оболочки теплого здания; 1-оболочка из вальцованного профилированного листа толщиной 1мм; 2минераловатный утеплитель марки 75; 3-то же марки 175

Представляется целесообразным рассмотреть возможность применения мстодики СНиП II-23-81 «Стальные конструкции» расчета внецентренносжатых стержней на устойчивость к расчету общей устойчивости оболочек из вальцованных профилированных листов. Для этого, кроме расчетной длины конечного элемента, необходимо знать еще и коэффициенты формы сечения профилей рассматриваемых оболочек. Данные о таких профилях в СНиП II-23-81 отсутствуют.

Для получения коэффициентов формы сечения данных профилей была использована методика определения несущей способности и деформаций сжатых стержней, опубликованная в работе [1]. Методика основана на диаграмме Прандтля, гипотезе плоских сечений и аппроксимации действительной формы изогнутой оси стержня тригонометрической функцией. Метод имеет хорошую сходимость с точным, что обосновано в этой же работе.

Суть данного метода заключается в следующем. В различных сечениях сжато-изогнутого стержня, нормальных к оси стержня, за пределами упругости могут возникнуть следующие типы напряженных состояний: напряженное

состояние 0, при котором в сечении имеют место только упругие деформации; напряженное состояние 1, при котором пластические деформации имеются только в сжатой зоне сечения; напряженное состояние 2, при котором пластические деформации имеются только в растянутой зоне сечения; напряженное состояние 3, при котором пластические деформации имеются одновременно в сжатой и растянутой зонах сечения. Каждое напряженное состояние описано соответствующими формулами. Возникновение того или иного типа напряженного состояния зависит от гибкости, формы сечения элемента, а также вида и соотношения действующих усилий в наиболее напряженном сечении упруго-пластического стержня. Функция, характеризующая взаимосвязь этих параметров имеет следующий вид:

$$\lambda_{x}^{2} = \frac{\pi^{2} E}{\varphi \sigma_{T}} \left(1 - \frac{m \varphi \chi}{1 - \varphi} \right) ,$$

где λ - гибкость в плоскости изгиба; E - модуль упругости материала; φ -коэффициент продольного изгиба; σ_T — предел текучести стали; m - относительный эксцентриситет в плоскости изгиба; с - функция, учитывающая влияние формы и размеров сечения на несущую способность внецентренно - сжатого стержня.

В практических расчетах обычно вводится коэффициент влияния формы сечения, определяемый по формуле:

$$\eta=\frac{\chi}{\chi_{,}},$$

где χ_{9} – функция влияния формы сечения для эталонного стержня. В качестве эталонного стержня принимается внецентренно-сжатый стержень прямоугольного сечения с шарнирно закрепленными концами из материала, диаграмма которого описывается схемой Прандтля.

Таким образом, задача по определению коэффициентов формы сечения сводилась к определению функции χ для рассматриваемых профилей.

На основе приведенной выше методики были получены формулы для определения коэффициентов формы сечения профилей корытообразного

сечения с дугообразной широкой полкой. В данной работе приводятся некоторые результаты определения коэффициентов влияния формы сечения профилей, показанных на рис.2, а также исследовано влияние кривизны полки на коэффициенты формы сечения на примере профилей, показанных на рис.5.

Рис. 2 Расчетные поперечные сечения профилей а - полученное на основе обмеров профилей натурной оболочки; б то же, с учетом гофрирования

Размеры профиля на рис. 2а получены на основе обмеров профилей натурного образца с последующей статистической обработкой результатов. Однако в отличие от реального профиля форма широкой полки принята в виде ломаной линии, что позволило избежать еще более громоздких расчетов.

Поперечное рифление широкой полки профиля приводит к тому, что гофрированная часть сечения перестает сопротивляться действию нагрузки и выключается из работы. В этом случае в расчет принимается эффективная ширина сечения. Теоретическое и экспериментальное обоснование этого положения и методика определения размеров эффективного сечения приводятся в работе [2]. Расчетное очертание такого профиля показано на рис. 26.

Для каждого из этих профилей были рассмотрены два случая. Первый когда сжаты узкие полки профиля и второй случай, когда сжата широкая дугообразная полка. В каждом из этих случаев было рассмотрено 18 видов напряженных состояний (рис. 3).

64

Напряженное состояние 2

Напряженное состояние 3

Рис. 3 Эпюры возможных напряженных состояний в профилях корытообразного сечения при сжатых узких полках

Для каждого напряженного состояния были получены расчетные формулы, которые здесь не приводятся ввиду их громоздкости. С их помощью стало возможным рассчитать сечения с любым соотношением размеров его элементов. При помощи программы Microsoft Excel, были получены кривые зависимостей коэффициентов продольного изгиба φ и коэффициентов формы сечения η от относительного эксцентриситета *m* и гибкости стержня λ На рис. 4 приведены эти графики для профиля с рис. 2a.

Рис. 4 Расчетные коэффициенты профиля с рис. 2a, при сжатых широких полках

а -коэффициент продольного изгиба φ ; б - коэффициент формы сечения η Влияние кривизны широкой полки профиля на коэффициенты формы сечения исследовалось на примере профилей, полученных из исходного профиля II, путем изменения кривизны широкой полки. Результаты показаны на рис. 6.

Рис. 5 Расчетные профили для исследования влияния кривизны широкой полки профиля на коэффициенты формы сечения

Рис. 6 Влияние кривизны широкой полки профиля на коэффициенты формы сечения a - при m = 5; б - при m = 0,5

- 1. Пинаджян В.В. Прочность и деформации сжатых стержней металлических конструкций. Ереван, Издательство АН Армянской ССР, 1971, 224с.
- Тамплон Ф.Ф. Марцинкевич Д.В. Популова Г.Ю. Пространственные покрытия из вальцованных профилированных листов. «Развитие школы проф. Н.С.Стрелецкого в современных условиях». Сб. науч. трудов. -М.: МГСУ, 1995.

66