ментарной ячейки. При помощи высокотемпературной рентгенографии исследована зависимость параметров элементарной ячейки от температуры и установлены температуры полиморфных переходов для $Bi_{12.8}\mathrm{Mn}_{0.2}\mathrm{Mo_5O_{34\pm\delta}}$. Методом сканирующей электронной микроскопии изучена керамика полученных молибдатов висмута, определена низкая пористость, и высокая плотность образцов. Размер частиц порошков измерен при помощи лазерной дифракции. Избранные образцы были аттестованы методом импедансной спектроскопии. Показано существенное увеличение электропроводности по сравнению с матричным соединением.

Работа выполнена при финансовой поддержке гранта РФФИ №16-33-60026 и гранта Президента МК-7979.2016.3.

- 1. Buttrey J. D., Compositional and structural trends among the bismuth molybdates, Top. Catalysis (2001).
- 2. Vannier R. N., Mairesse G., Abraham F. et al., $Bi_{26}Mo_{10}O_{\delta}$ Solid Solution Type in the Bi_2O_3 – MoO_3 – V_2O_5 Ternary Diagram, J. Solid State Chem (1996).

СЛОЖНЫЕ ОКСИДЫ Sr_{1-x}Y_xFeO_{3-δ}: КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СВОЙСТВА

<u>Рудик В.В.</u>*, Урусова А.С., Черепанов В.А.

Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия

*E-mail: Viktoria.Rudik@urfu.ru

COMPLEX OXIDES Sr_{1-X}Y_xFeO_{3-\Lambda}: CRYSTAL STRUCTURE AND PROPERTIES

Rudik V.V.*, Urusova A.S., Cherepanov V.A.

Ural Federal University, Yekaterinburg, Russia

This work is devoted to the study the crystalline structure and physicochemical properties of complex oxides $Y_xSr_{1-x}FeO_{3-\delta}$. The samples were prepared using glycerol-nitrate technique. The structural parameters were refined using Rietveld full-profile analysis. The changes of oxygen content in oxides versus temperature were determined by thermogravimetric analysis. The average thermal expansion coefficients for the $Y_xSr_{1-x}FeO_{3-\delta}$ samples were calculated within the temperature range 298–1373 K in air.

Данная работа посвящена изучению кристаллической структуры, кислородной нестехиометрии и физико-химических свойств сложных оксидов состава $Y_x Sr_{1-x} FeO_{3-\delta}$.

Образцы для исследования были приготовлены по глицерин-нитратной технологии. Методом рентгеновской порошковой дифракции установлена область гомогенности твердых растворов $Y_xSr_{1-x}FeO_{3-\delta}$ (0.05 \leq x \leq 0.25, 0.875 \leq x \leq 1) при 1373 К на воздухе. Дифрактограммы однофазных твердых растворов $Y_xSr_{1-x}FeO_{3-\delta}$ с 0.05 \leq x \leq 0.25 были проиндексированы в рамках кубической ячейки (пр. гр. Pm3m). Сложные оксиды $Y_xSr_{1-x}FeO_{3-\delta}$ с 0.875 \leq x \leq 1 были описаны в рамках орторомбической структуры подобно незамещенному ферриту иттрия $YFeO_3$ (пр. гр. Pnma).

Методом термогравиметрического анализа получены зависимости относительной кислородной нестехиометрии сложных оксидов $Y_xSr_{1-x}FeO_{3-\delta}$ от температуры на воздухе. Абсолютные значения кислородного индекса δ определяли методом йодометрического титрования, на образцах медленно охлажденных до комнатной температуры.

Измерения относительного увеличения размера образцов $Y_xSr_{1-x}FeO_{3-\delta}$ ростом температуры проводили на дилатометре DIL 402 C в температурном интервале 298 – 1373 K на воздухе со скоростью нагрева и охлаждения 5°K/мин.

Общую электрическую проводимость сложных оксидов $Y_xSr_{1-x}FeO_{3-\delta}$ с $0.05{\le}x{\le}0.25$ измеряли 4-х контактным методом в интервале температур 298-1373 K на воздухе.

В таблице представлены значения параметров элементарных ячеек, содержание кислорода, средняя степень окисления железа в образцах, значения средних коэффициентов термического расширения для $Y_xSr_{1-x}FeO_{3-\delta}$

Значения параметров элементарных ячеек, содержание кислорода, средняя степень окисления железа в образцах, значения средних коэффициентов термического расширения $Y_x Sr_{1-x} FeO_{3-\delta}$

Состав	Пр. гр.	a, Å	b, Å	c, Å	3-δ	T, K	KTP×10 ⁶ , K ⁻¹
SrFeO _{3-δ}	I4/mmm	10.9	014	7.687	2.78±0.04	298-553	15.6
S11 eO _{3-δ}	14/111111111	10.914		7.087	2.78±0.01*	573-1373	35.8
$Sr_{0.95}Y_{0.05}FeO_{3-\delta}$		3.866			2.75±0.04	-	-
$Sr_{0.9}Y_{0.1}FeO_{3-\delta}$	Pm3m	3.875			2.74±0.04	298-600	14.7
S1 _{0.9} 1 _{0.1} 1 eO _{3-δ}						600-1373	27.5
$Sr_{0.85}Y_{0.15}FeO_{3-\delta}$		3.869			2.69±0.04		
Sr _{0.8} Y _{0.2} FeO _{3-δ}		3.869			2.65±0.04	298-600	13.9
S1 _{0.8} 1 _{0.2} 1 eO _{3-δ}						600-1373	22.5
$Sr_{0.75}Y_{0.25}FeO_{3-\delta}$		3.866			2.65±0.04	-	-
$YFeO_{3-\delta}$	Pnma	5.587	7.596	5.276	2.99±0.01*	298-1373	11.41
$Sr_{0.05}Y_{0.95}FeO_{3-\delta}$		5.583	7.609	5.291	-	-	-
$Sr_{0.1}Y_{0.9}FeO_{3-\delta}$		5.577	7.613	5.293	3.05±0.01*		
$Sr_{0.125}Y_{0.875}FeO_{3-}$		5.572	7.615	5.296	-	-	-

РАЗРАБОТКА МАГНИТНЫХ КЛИНЬЕВ ДЛЯ АСИНХРОННЫХ ДВИГАТЕЛЕЙ МАЛОЙ И СРЕДНЕЙ МОЩНОСТИ

<u>Зыков Ф.М.</u> 1* , Ягупов А.И. 1 , Шустов И.И. 2

1) Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия

²⁾ АО Опытное конструкторское бюро «Новатор» имени Люльева Л.В, г. Екатеринбург, Россия

*E-mail: zykofffedor@gmail.com

DEVELOPMENT OF MAGNETIC WEDGES FOR ASYNCHRONOUS MOTORS LOW AND MEDIUM POWER

Zykov F.M.^{1*}, Yagupov A.I.¹, Shustov I.I.²

¹⁾ Ural Federal University, Yekaterinburg, Russia

²⁾ JSC «EMDB «Novator», Yekaterinburg, Russia

The thesis discusses the use of interlocking wedges of magnetic composite materials for achieving higher level of induction motors.

В настоящее время в России потребление электроэнергии электрическими машинами переменного тока составляет более 40% производимой электроэнергии [1]. В связи с этим повышение энергоэффективности машин переменного тока является актуальной задачей. Одним из путей повышения энергоэффективности и надежности машин (асинхронных электродвигателей) переменного тока является использование в пазах статора клиньев из магнито-мягких материалов — «магнитных клиньев» вместо клиньев классического исполнения из немагнитных материалов (например, из стеклотекстолита (СТ)).

Существует способ изготовления магнитного клина из магнитодиэлектрического композиционного материала [2]. В состав данного материала-композита входят: ферромагнитный (фм) наполнитель, полимерная матрица и армирующий компонент. Магнитодиэлектрический композиционный материал изготавливается в виде листов или плит. Для изготовления плиты изначально готовится магнитодиэлектрическая масса путем введения и диспергирования в полимерную матрицу фм наполнителя с размером частиц менее 3мкм. Полученная магнитодиэлектрическая масса заливается в пресс-форму, где в качестве армирующего элемента размещается стекловолокнистая ткань. Производится обработка магнитным полем напряженностью не менее 800 эрстед, для структурирования частиц наполнителя и придания композиционному материалу анизотропной структуры. Из полученной плиты вырезаются отдельные клинья требуемой формы.