Для изучения фазовых равновесий в системе был выбран политермический разрез AB, находящийся в поле хромата рубидия: $A[Rb_2CrO_4-40\%, RbBr-60\%]$ $B[Rb_2CrO_4-40\%, RbI-60\%]$.

В результате исследования разреза АВ установлено, что в системе отсутствуют термоэффекты при постоянной температуре кристаллизации, т.е. тройная эвтектика не образуется. Из политермического разреза АВ установлена минимальная температура плавления твердых растворов на основе бромида и йодида рубидия, что отвечает направлению на точку минимума на моновариантной кривой.

Дальнейшим изучением разреза, выходящего из вершины хромата рубидия и проходящего через точку, соответствующую направлению на минимум $\overline{\mathbf{M}}$, определены характеристики точки минимума М: температура плавления $581^{\circ}\mathrm{C}$, соотношение компонентов RbBr -30%, RbI -39%, Rb₂CrO₄-31%. Кривые охлаждения состава образца, отвечающего точке минимума, показывают один экзотермический эффект при температуре $581^{\circ}\mathrm{C}$.

- 1. Коровин Н.В., Электрохимическая энергетика, Энергоатомиздат (1991)
- 2. В.И. Посыпайко, Е.А. Алексеева., Диаграммы плавкости солевых систем. Ч. III. Двойные системы с общим катионом, Металлургия (1979)

ПЕРСПЕКТИВНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ СИСТЕМЫ K,Rb||F,CrO₄

<u>Малышев Г.М.</u>*, Рогожкина Д.Е., Бурчаков А.В.

Самарский государственный технический университет, г. Самара, Россия *E-mail: malyshev-greg@yandex.ru

ADVENCED MATERIALS BASED ON THE SYSTEM K,Rb||F,CrO₄

Malyshev G.M.*, Rogozhkina D.E., Burchakov A.V.

Samara State Technical University, Samara, Russia

The compositions and temperatures of non-invariant equilibrium points are determined by the method of differential thermal analysis. Results: min 723 [33,33% KF, 28,77% K₂CrO₄, 37,9% Rb₂CrO₄], Min 748 [30% KF, 31,4% K₂CrO₄, 38,6% Rb₂CrO₄], Min 694 [45,5% KF, 34% Rb₂CrO₄, 20,5% RbF].

Уникальные свойства солевых расплавов обусловлены их ионным строением. Поэтому исследования, посвященные установлению связи между их структурой и физико-химическими свойствами, а также формирование и поиск разнообразных МКС с заданными свойствами способствуют не только продвижению вперед прикладной химии, но и позволяет расширить область применение солевых расплавов [1].

Для экспериментального исследования серии образцов составов трехкомпонентной взаимной системы $K,Rb||F,CrO_4$ был использован метод дифференциального термического анализа (ДТА). Фазовый комплекс трехкомпонентной взаимной системы принято изображать в виде проекции поверхности ликвидуса на квадрат составов (Рисунок 3.2). В данной системе прогнозируется три поля кристаллизации HPTP $K_xRb_{1-x}F$, $K_{2x}Rb_{2-2x}CrO_4$ и $K_{3x}Rb_{3-3x}FCrO_4$. В системе присутствует стабильная секущая D_1 - D_2 , которая представляет собой квазибинарную систему Rb_3FCrO_4 - K_3FCrO_4 . Поэтому в первую очередь было проведено изучение фазовых равновесий в этой системе.

Экспериментально изучен политермический разрез D_1 [33,3% RbF, 66,7% Rb_2CrO_4] - D_2 [33,4% KF, 66,6% K_2CrO_4]. Была найдена температура плавления и состав точки min 723 [40% Rb_3FCrO_4 +60% K_3FCrO_4]. Выявлена смесь min 586 с минимальной температурой полиморфной модификации твердого раствора (K3xRb3-3xFCrO4), состав которой совпадает с точкой min 723.

Следующими были изучены нестабильные диагонали Rb_2CrO_4 -RbF. Из разрезов выявлены точки пересечения моновариантных линий совместной кристаллизации твердых растворов с плоскостью сечения: а и b на диагонали Rb_2CrO_4 -KF, с и d на диагонали K_2CrO_4 -RbF. В данных системах наблюдается полиморфное превращение твердого раствора $K_{3x}Rb_{3-3x}FCrO_4$. и отсутствует нонвариантное равновесие.

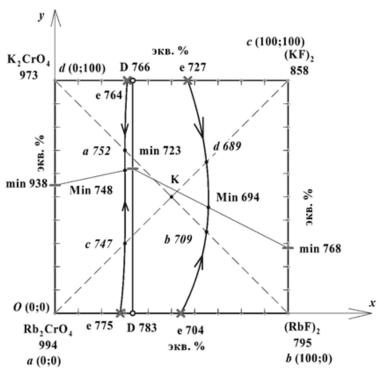


Рис. 1. Проекция поверхности ликвидуса на квадрат составов системы K,Rb||F,CrO4

В дальнейшем проведено изучение политермических разрезов, проходящих вдоль моновариантных линий е 775 — е 764 и е 704 — е 727 с целью выявления минимальной температуры фазового равновесия (точки тройного минимума).

В результате экспериментального изучения фазового комплекса трехкомпонентной взаимной системы $K,Rb||F,CrO_4$ определены составы, которые могут использоваться в качестве расплавляемых электролитов химических источников тока: min 723 [33,33% KF, 28,77% K_2CrO_4 , 37,9% Rb_2CrO_4], Min 748 [30% KF, 31,4% K_2CrO_4 , 38,6% Rb_2CrO_4], Min 694 [45,5% KF, 34% Rb_2CrO_4 , 20,5% RbF]

1. Магомедова Г.А., Гаматаева Б.Ю., Гасаналиев А.М., Известия ДГПУ, 2(2009).

ИЗУЧЕНИЕ ЛЮМИНЕСЦЕНТНЫХ СВОЙСТВ $SrGa_2S_4$, АКТИВИРОВАННОГО РЕДКОЗЕМЕЛЬНЫМИ ИОНАМИ Nd^{3+}

Марьина У.А.*, Воробьев В.А., Марьин А.П., Пигулев Р.В. Северо-Кавказский федеральный университет, г. Ставрополь, Россия *E-mail: <u>umarina@ncfu.ru</u>

THE STUDY OF LUMINESCENT PROPERTIES OF SrGa₂S₄, ACTIVATED WITH RARE EARTH IONS Nd³⁺

Maryina U.A.*, Vorobiev V.A., Maryin A.P., Pigulev R.V.

North-Caucasus Federal University, Stavropol, Russia

Solid-phase method obtained phosphors based on strontium thiogallate SrGa₂S₄, activated by trivalent neodymium ions Nd³⁺. The spectral properties of fluorescent powders are investigated. When excited by a laser with a wavelength of 815 nm, luminescence is detected in the bands 900, 1075, 1360, 1800 nm. The luminescence mechanism in the SrGa₂S₄:Nd³⁺ compound is considered.

Создание новых люминесцентных материалов, излучающих в ИК-диапазоне, является актуальной задачей для современной лазерной техники. Тиогаллаты щелочноземельных металлов имеют оптические ширины запрещенных зон (4,1-4,4 эВ) [1] и низкую энергию фононов $(350-410 \text{ см}^{-1})$ [2], что позволяет получать высокоэффективные люминофоры на их основе, обладающие интересными люминесцентными и электролюминесцентными свойствами.

Перспективным ИК-люминофором может быть тиогаллат стронция $SrGa_2S_4$, активированный ионами неодима Nd^{3+} . Согласно литературным данным [3] в схожих по структуре кристаллах $CaGa_2S_4$: Nd^{3+} и $PbGa_2S_4$: Nd^{3+} при возбуждении лазером с длиной волны 810 нм наблюдаются характерные люминесцентные пики в ближней и средней ИК-области, соответствующие излучательным переходам в ионах неодима Nd^{3+} .

Синтез экспериментальных образцов осуществляли поэтапно твердофазным методом в высокотемпературной печи при температурах 700, 780 и 800 °C с постоянным добавлением серы. Для создания восстановительной атмосферы образцы помещались в тигли и сверху засыпались БАУ. В качестве основных