Развитие отрасли водородной энергетики, в частности, топливых элементов, способных работать в области температур $500-700^{\circ}$ С, требует разработки материалов, характеризующихся высокой проводимостью и устойчивостью к парам воды и углекислому газу. Наиболее изученными в данной области являются материалы на основе цератов и цирконатов щелочноземельных металлов. Так, церат бария $BaCeO_3$ показывает достаточно высокие значения электропроводности, но при этом деградирует в атмосфере CO_2 .

Для оптимизации свойств материалов часто используют методы допирования. Наиболее распространенным является допирование катионной подрешетки Однако, существует другой метод улучшения физико-химических свойств — анионное допирование, то есть замещение ионов O^{2-} на ионы иного радиуса или валентности.

В рамках настоящего исследования методом твердофазного синтеза получены галогензамещенные составы на основе $Ba_2In_2O_5$, $Ba_4In_2Zr_2O_{11}$ и $Ba_4Ca_2Nb_2O_{11}$, проведена их рентгенографическая аттестация. Выполнено исследование химической устойчивости полученных галогензамещенных сложных оксидов к парам воды и углекислому газу. Установлено, что F^- - и Cl^- -содержащие образцы являются более химически устойчивыми по сравнению с недопированными составами, что позволяет сделать вывод о том, что введение фторид- и хлорид-ионов в анионную подрешетку способствует увеличению химической устойчивости кислороддефицитных сложных оксидов.

Работа выполнена при финансовой поддержке РНФ (проект 18-73-00006)

ПРОЦЕССЫ ГИДРАТАЦИИ И ПРОТОННАЯ ПРОВОДИМОСТЬ ВаLa_{0.9}Sr_{0.1}InO_{3.95}

<u>Галишева А.О.</u>*, Тарасова Н.А., Анимица И.Е., Корона Д.В.

Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, г. Екатеринбург, Россия

*E-mail: jelya95@gmail.com

HYDRATION PROCESSES AND PROTON CONDUCTIVITY OF BaLa_{0.9}Sr_{0.1}InO_{3.95}

Galisheva A.O.*, Tarasova N.A., Animitsa I.E., Korona D.V.

Ural Federal University, Yekaterinburg, Russia

The new complex oxide BaLa_{0.9}Sr_{0.1}InO_{3.95} was synthesized by the solid state method. The crystalline structure has been investigated by the powder X-ray diffraction. The studied phases were found to be able to incorporate water from the gas phase. The con-ductivity was measured at T and pH₂O variation.

Перспективными ионными проводниками для среднетемпературных топливных элементов являются протонные электролиты на основе сложных оксидов. Наиболее изученными протонными проводниками являются сложные оксиды со структурой перовскита или производной от нее. Однако, в последние годы появились исследования, посвященные новому классу кислородно-ионных проводников со структурой Раддлесдена-Поппера на основе BaNdInO₄. Структура BaNdInO₄ представлена двумя чередующимися слоями: 1) перовскитоподобный слой, образованный соединенными вершинами октаэдрами [InO₆] и атомами Ва, расположенными в пустотах между октаэдрами; 2) слой, образованный атомами Nd, расположенными также как в оксиде Nd_2O_3 (в отличие от слоистой структуры типа К2NiF4, где второй солеподобный слой КF). Также было показано, что акцепторное допирование BaNdInO₄ приводит к увеличению общей проводимости на порядок. В тоже время наличие кислородной разупорядоченности в данных фазах может также создавать предпосылки реализации протонной проводимости в атмосферах с повышенной влажностью. Наличие солевого блока в данных фазах обеспечивает возможность больших концентраций протонных носителей, а вакансионно разупорядоченная матрица перовскитного блока – быстрый ионный транспорт. Таким образом, новый класс протонных проводников со структурой Раддлесдена-Поппера на основе ВаМІпО4 перспективным для создания с его использованием новых высокоэффективных протонпроводящих электролитов.

В настоящей работе впервые получен сложный оксид $BaLa_{0.9}Sr_{0.1}InO_{3.95}$, исследованы его структура и транспортные свойства, доказана его способность к гидратации и проявлению протонного переноса.

Работа выполнена при финансовой поддержке гранта Президента РФ (проект MK-24.2019.3)